Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (10): 1678-1682    https://doi.org/10.11896/j.issn.1005-023X.2018.10.021
  材料研究 |
C/C复合材料的旋转偏振成像方法
李妙玲,陈智勇,赵红霞
洛阳理工学院机械工程学院,洛阳 471023
A Rotational Polarized Light Imaging Method of Carbon/Carbon Composite
LI Miaoling, CHEN Zhiyong, ZHAO Hongxia
Department of Mechanical Engineering, Luoyang Institute of Science and Technology, Luoyang 471023
下载:  全 文 ( PDF ) ( 2309KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究提出了一种旋转偏振显微成像方法。根据热解碳独特的双反射特性,设计了仅有一个检偏镜的显微图像采集系统;通过检偏镜的旋转,获取C/C复合材料在不同偏振角位置的单偏光图像;经过图像配准和图像融合,合成最大、最小反射率和双反射率映射图像。这种映射图像反映的信息是采用常规显微镜法不能观察到的,它直观地揭示了材料内部的微观结构特征,可以作为测定热解碳真实反射率的基础。本研究可为C/C复合材料微观结构分析以及相关特征参数测量提供理论依据和实现途径。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李妙玲
陈智勇
赵红霞
关键词:  C/C复合材料  双反射  旋转偏振光成像  偏光显微镜  图像处理    
Abstract: A novel rotational polarized imaging method was developed for the microstructure analysis and the characterization parameter measurement of C/C composites in this work. An optical imaging system with a rotatable analyzer in the incident light path was established according to the bireflectance property of pyrocarbon. The micrographs of the polished C/C composite by the single-polarized light were collected at each analyzer position. The maps of maximum reflectance, minimum reflectance and bireflectance were obtainable from the ordered polarization images by the image registration and mergence methods. The maps were unique in that they show fields of view that cannot be seen by normal viewing in the microscope. The microstructure of C/C composites can be perfectly revealed in the integrated image, from which the true reflectance of pyrocarbon can be evaluated.
Key words:  C/C composites    bireflectance    rotational polarization light    polarized light microscope    image processing
出版日期:  2018-05-25      发布日期:  2018-07-06
ZTFLH:  TB332  
基金资助: 河南省自然科学基金(162300410197)
作者简介:  李妙玲:女,1970年生,博士,副教授,研究方向为复合材料的制备与表征技术、图像处理和计算机模拟仿真 E-mail:miaolingli1970@163.com
引用本文:    
李妙玲,陈智勇,赵红霞. C/C复合材料的旋转偏振成像方法[J]. 《材料导报》期刊社, 2018, 32(10): 1678-1682.
LI Miaoling, CHEN Zhiyong, ZHAO Hongxia. A Rotational Polarized Light Imaging Method of Carbon/Carbon Composite. Materials Reports, 2018, 32(10): 1678-1682.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.10.021  或          https://www.mater-rep.com/CN/Y2018/V32/I10/1678
1 Liu H, Li K Z. Microstructure of C/C composites with different matrix carbon[J]. Journal of Materials Engineering,2016,44(7):7 (in Chinese).
刘皓,李克智.C/C复合材料不同基体炭的微观结构[J].材料工程,2016,44(7):7.
2 Deng H L,Li K Z,Li H J,et al.Densification behavior and microstructure of carbon/carbon composites prepared by chemical vapor infiltration from xylene at temperatures between 900 and 1 250 ℃[J].Carbon,201l,49(7):2561.
3 Zhang W G, Hüttinger K J. Texture formation of pyrolytic carbon in chemical vapor deposition and infiltration[J]. New Carbon Materials,2006,21(2):185.
4 Hu Gang, Zeng Xierong, Ma Jun, et al. Effect of microstructure on thermoelectric properties of carbon/Carbon Composites[J]. Journal of Inorganic Materials,2015,30(4):357 (in Chinese).
胡钢,曾燮榕,马俊,等.炭/炭复合材料微观结构对热电性能的影响[J].无机材料学报,2015,30(4):357.
5 Zheng Jinhuang, Deng Hailiang, Yin Zhong, et al. Microstructure and mechanical properties of carbon/carbon composites densified with pyrocarbon from xylene using LaCl3 as catalyst[J]. New Carbon Materials,2016,31(5):510(in Chinese).
郑金煌,邓海亮,殷忠,等.稀土镧催化热解二甲苯制备C/C复合材料及其微观结构与力学性能[J].新型炭材料,2016,31(5):510.
6 Crelling J C, Bensley D. Characterization of carbon materials using quantitative optical microscopy[J]. Preprints of Papers, American Chemical Society, Division of Fuel Chemistry,1995,40(3):435.
7 Lester E, Watts D, Cloke M. A novel automated image analysis method for maceral analysis[J]. Fuel,2002,81(17):2209.
8 Chuan X Y, Li H J, Lu J H. Why does cross-extinction property of pyrolytic carbon of C/C composites manufactured by CVI never disappear?[J]. Journal of Northwestern Polytechnical University,2005,23(5):657(in Chinese).
传秀云,李贺军,卢锦花.化学气相渗透碳/碳复合材料热解碳光性特征——热解碳十字消光机理探讨[J].西北工业大学学报,2005,23(5):657.9 Li Miaoling, Qi Lehua, Li Hejun, et al. Extinction angle for characterizing optical properties of pyrocarbon[J]. Acta Aeronautica et Astronautica Sinica,2008,29(6):1699 (in Chinese).
李妙玲,齐乐华,李贺军, 等.热解炭光学特性的消光角表征[J].航空学报,2008,29(6):1699.
10 Pfrang A, Schimmel T. Quantitative analysis of pyrolytic carbon films by polarized light microscopy[J]. Surface and Interface Analysis,2004,36(2):184.
11 Bortchagovsky E G. Reflection polarized light microscopy and its application to pyrolytic carbon deposits[J]. Journal Applied Physics,2004,95(9):5192.
12 Li M L, Qi L H, Li H J. An image analysis technique for the components of carbon/carbon composites[J]. Acta Materiae Compositae Sinica,2007,24(4):106(in Chinese).
李妙玲,齐乐华,李贺军.C/C复合材料组分含量的图像分析方法[J].复合材料学报,2007,24(4):106.
13 Liu Zhe, Guo Jun. Material classification based on polarized light imaging[J]. Journal of Photonics,2016(10):65(in Chinese).
刘喆,郭俊.基于偏振光成像的材质分类研究[J].光学学报,2016 (10):65.
14 Wang Xin, Wang Xueqin, Sun Jinzuo. Study of target identification based on polarization imaging and image fusion[J]. Laser & Infrared,2007,37(7):676(in Chinese).
王新,王学勤,孙金祚.基于偏振成像和图像融合的目标识别技术[J].激光与红外,2007,37(7):676.
15 Contreras R J, Pilawski D, Califice A, et al. Quantitative microtexture analysis of carbonate rocks using bireflectance imaging[C]∥ proceedings of IAMG2010.Budapest, Hungary,2010.
16 Ergun S, Yasinsky J B, Townsend J R. Tansverse and longitudinal properties of graphite[J]. Carbon,1967,5(4):403.
17 Crelling J C, Glasspool I J, Gibbins J R, et al. Bireflectance imaging of coal and carbon specimens[J]. International Journal of Coal Geo-logy,2005,64(3-4):204.
18 Li M L, Qi L H, Li H J, et al. Measurement of the extinction angle about laminar pyrocarbons by image analysis in reflection polarized light[J]. Materials Science and Engineering A,2007,448(1-2):80.
19 全国煤炭标准化技术委员会.GB/T 6948-2008煤的镜质体反射率显微镜测定方法[S].北京:中国标准出版社,2009.
[1] 张倩玮, 陈意高, 崔红, 吴小军. SiC-ZrC复相超高温陶瓷改性C/C复合材料的研究进展[J]. 材料导报, 2024, 38(3): 22060154-10.
[2] 牛冬瑜, 黄山, 师伟博, 谢希望, 汪严, 高仰明. 粗集料接触配位参数影响下沥青混合料的抗断裂特性研究[J]. 材料导报, 2024, 38(23): 23050048-10.
[3] 王述红, 贡藩, 尹宏, 修占国. 聚酯纤维泡沫混凝土力学性能及孔结构研究[J]. 材料导报, 2024, 38(1): 22060231-8.
[4] 蔡成林, 李泽贤, 印峰. 维氏硬度试验中的视觉检测算法研究综述[J]. 材料导报, 2023, 37(8): 21070036-10.
[5] 张曦挚, 崔红, 胡杨, 邓红兵. 利用等离子喷涂制备C/C复合材料表面耐烧蚀抗氧化涂层的研究进展[J]. 材料导报, 2023, 37(6): 21050162-7.
[6] 韩照, 张云升, 乔宏霞, 冯琼, 薛翠真, 尚明刚. 基于CT扫描及图像处理技术的机制砂形貌研究[J]. 材料导报, 2023, 37(19): 22060032-6.
[7] 项赫, 姜亚明, 杨晨, 周艺颖. 基于双目视觉的纬编双轴向壳体复合材料纱线取向检测方法[J]. 材料导报, 2023, 37(14): 21110125-6.
[8] 李胜男, 路全彬, 都东, 孙华为, 周许升, 龙伟民. C/C复合材料钎焊接头应力场的有限元分析[J]. 材料导报, 2023, 37(1): 21120062-5.
[9] 刘娟红, 孟翔, 段品佳, 马焜. 基于MATLAB的混凝土裂缝宽度计算方法研究[J]. 材料导报, 2022, 36(6): 21010082-6.
[10] 魏贺冉, 闫联生, 孙建涛. 离子推力器栅极材料的发展现状[J]. 材料导报, 2022, 36(22): 22050099-6.
[11] 牛荻涛, 罗扬, 苏丽, 黄大观. 玄武岩-聚丙烯混杂纤维增强混凝土气孔结构分形分析[J]. 材料导报, 2022, 36(13): 20120198-6.
[12] 郝哲昕, 钱春香, 周横一, 李进, 吴亚东, 张昆. 清水混凝土外观质量信息采集与分析方法及其工程应用[J]. 材料导报, 2020, 34(Z2): 233-241.
[13] 赵毅, 杨旋, 郝增恒, 梁乃兴, 田于锋. 沥青混合料均匀性数字图像评价方法研究进展[J]. 材料导报, 2020, 34(23): 23088-23099.
[14] 季根顺, 陈晓龙, 贾建刚, 李小龙, 龚静博, 郝相忠. 液相汽化TG-CVI法制备C/C复合材料的组织和性能[J]. 材料导报, 2020, 34(2): 2029-2033.
[15] 翟培卓, 薛松柏, 陈涛, 孙子建, 陈卫中, 郭佩佩. 焊缝跟踪过程传感与信号处理技术的研究进展[J]. 材料导报, 2019, 33(7): 1079-1088.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed