Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (10): 1683-1687    https://doi.org/10.11896/j.issn.1005-023X.2018.10.022
  材料研究 |
一种非球形纳米二氧化硅颗粒制备新方法
孔 慧1,2,刘卫丽1,宋志棠1
1 中国科学院上海微系统与信息技术研究所,信息功能材料国家重点实验室,上海 200050;
2 中国科学院大学微电子学院,北京 100049
An Innovative Preparation Methodology of Non-spherical Nanosize Silica Particle
KONG Hui1,2, LIU Weili1, SONG Zhitang1
1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, Shanghai 200050;
2 School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049
下载:  全 文 ( PDF ) ( 8674KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以低成本工业级硅酸钠为原料,采用离子交换法制备了非球形纳米二氧化硅颗粒。在制备过程中,采用控制无机碱催化剂1%(质量分数)氢氧化钠水溶液滴加到活性硅酸速度的方法来控制二氧化硅晶核成核的形貌,进而控制二氧化硅颗粒的形貌,避免了传统方法(通过引入有机碱或者引入二价或三价阳离子)制备非球形二氧化硅颗粒的不足。扫描电镜显示所制备的二氧化硅颗粒为非球形(呈花生、哑铃或枣状),轴向粒径为10~20 nm,径向粒径为45~80 nm。激光粒度分析仪测试表明非球形颗粒高斯分布平均粒径为39.0 nm,多分散指数高达0.261。该方法制备非球形二氧化硅颗粒步骤简单、环境友好,非常有利于工业化生产与应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孔 慧
刘卫丽
宋志棠
关键词:  非球形  纳米二氧化硅  轴向粒径  径向粒径    
Abstract: Non-spherical nanosize silica particles were prepared by ion exchange method using low cost industrial sodium silicate as raw material. In the preparation process, the morphology of the silica particle was controlled by the shape of the silica nuclei, which was dominated by the feeding rate of inorganic alkali catalyst 1% (mass fraction) NaOH solution to the fresh active silicic acid during nuclei formation process. This method avoided the deficiency of conventional methods (by introducing organic bases or by introducing double or triple valence cations) for synthesizing non-spherical silica particles. Scanning electron microscopy (SEM) de-monstrated that the morphology of the prepared silica particles were not spherical (like peanut, dumbbell or jujube), the axial size was about 10—20 nm, the range of the radial size was about 45—80 nm. Dynamic light scattering (DLS) test revealed that the average size of Gaussian distribution of non-spherical particle was 39 nm, and the polydispersity index was as high as 0.261. This method of preparing non-spherical silica particles is simple and environment-friendly, and is very beneficial to industrial production and application.
Key words:  non-spherical    nanosize silica particle    radial size    axial size
出版日期:  2018-05-25      发布日期:  2018-07-06
ZTFLH:  TB321  
  TB32  
  U283.5  
基金资助: 上海市优秀技术带头人项目(14XD1425300);上海张江国家自主创新示范区专项发展资金重点项目(201609-JS-B2074-002;201609-JS-C1085-015)
通讯作者:  刘卫丽:通信作者,女,1975年生,博士,教授,博士研究生导师,主要研究方向为纳米二氧化硅颗粒的制备及抛光液技术开发 E-mail:rabbitlwl@ mail.sim.ac.cn   
作者简介:  孔慧:女,1983年生,博士,助理研究员,主要研究方向为纳米二氧化硅颗粒的制备及抛光液技术开发 E-mail:konghui@mail.sim.ac.cn
引用本文:    
孔 慧,刘卫丽,宋志棠. 一种非球形纳米二氧化硅颗粒制备新方法[J]. 《材料导报》期刊社, 2018, 32(10): 1683-1687.
KONG Hui, LIU Weili, SONG Zhitang. An Innovative Preparation Methodology of Non-spherical Nanosize Silica Particle. Materials Reports, 2018, 32(10): 1683-1687.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.10.022  或          https://www.mater-rep.com/CN/Y2018/V32/I10/1683
1 Liang C L, Wang L Y, Liu W L, et al. Non-spherical colloidal silica particles—Preparation, application and model[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2014,457(1):67.
2 Li W W, Diao J X. The preparation of nanometer non spherical colloidal silica and its polishing character[J]. ECS Transactions,2013,52(1):507.
3 Negrych J A, Haag G, Rall P E, et al. Abrasive media and aqueous slurries for chemical mechanical polishing and planarization: US,6334880B1[P].2002-01-01.
4 Maejima K, Miyabe S, Izumi M, et al. Polishing composition for semiconductor wafer, production method thereof, and polishing method: US,2008/0038996A1[P].2008-02-14.
5 Nakajo M, Izumi M, Miyabe S, et al. Polishing compound for semiconductor wafer polishing and polishing method: US,2009/0223136A1[P].2009-09-10.
6 Izumi M, Nakajo M, Saito Y, et al. Polishing composition for semiconductor wafer: US,2010/0163786A1[P].2010-07-01.
7 李家荣,唐会明,张金平.一种非球形纳米级硅溶胶的制备方法:中国,102390837A[P].2012-03-28.
8 李薇薇,关飞飞,徐功涛.不规则形貌硅溶胶的制备方法及其应用:中国,103408027A[P].2013-11-27.
9 施为德.马铃薯形二氧化硅溶胶及其制备方法:中国,101402829A [P].2009-04-08.
10 Shih Z W, Chang K Y, Tseng C L, et al. Method for preparing shape-changed nanosize colloidal silica: US,2003/0113251A1[P].2003-06-19.
11 大森丰,伊藤博友,山口健二.具有细长形状的硅溶胶的制造方法:中国,101626979A[P].2010-01-13.
12 George W, Sears J. Determination of specific surface area of colloidal silica by titration with sodium hydroxide[J]. Analytical Chemistry,1956,28(12):1981.
13 Lu Q W, Wang Y B, Hai E H. A discussion on the formation condition and mechanism of silica gel[J]. Journal of Inner Mongolia Polytechnic University,1994,13(3):17(in Chinese).
陆庆玮,王一兵,海尔汗.硅酸凝胶生成条件与机理的探讨[J].内蒙古工业大学学报,1994,13(3):17.
14 戴安邦.硅酸聚合作用的一个理论[J].南京大学学报(化学版),1963(1):1.
15 Iler R K. The chemistry of silica[M]. New York: Wiley-Interscience,1979:224.
[1] 申爱琴, 陈荣伟, 郭寅川, 范建航, 戴晓倩, 丑涛. 季冻区纳米SiO2改性SAP路面混凝土的耐磨性[J]. 材料导报, 2024, 38(7): 23010093-6.
[2] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[3] 李吉泰, 展悦, 冯明珠, 崔永岩. 超亲水-空气疏油水下超疏油不锈钢网的制备及性能[J]. 材料导报, 2022, 36(Z1): 22010079-5.
[4] 陈煜太, 黄威, 姜红, 李珊, 王元凤. 磺酸基与羧基修饰纳米二氧化硅:两种阴离子型纳米指纹显现材料的制备与应用[J]. 材料导报, 2022, 36(5): 21020127-7.
[5] 杨雪, 苏静, 王鸿博. 基于HDTMS的一步法构筑棉织物超疏水表面[J]. 材料导报, 2020, 34(Z1): 542-547.
[6] 章强, 刘洪利, 陈迎豪, 李兴建, 张宜恒. 纳米二氧化硅改性“Click”型侧链含氟聚氨酯的制备及在织物整理剂上的应用[J]. 材料导报, 2020, 34(14): 14218-14222.
[7] 王茹,万芹,王高勇. 纳米二氧化硅对苯丙共聚物/水泥复合胶凝材料凝结硬化的影响[J]. 材料导报, 2019, 33(22): 3712-3719.
[8] 何海峰,寇新秀,吕海亮,白瑞钦,刘欣,靳涛. 聚酰胺胺改性纳米二氧化硅的研究进展[J]. 材料导报, 2019, 33(17): 2882-2889.
[9] 张秀芝,刘明乐,杜笑寒,杨祥子,周宗辉. 纳米SiO2与粉煤灰协同改性水泥基材料性能研究[J]. 《材料导报》期刊社, 2017, 31(24): 50-55.
[10] 王 茹,张绍康,王高勇. 矿物外加剂对丁苯聚合物/水泥复合胶凝材料凝结硬化过程的影响及机制[J]. 《材料导报》期刊社, 2017, 31(24): 69-73.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed