Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (10): 1645-1649    https://doi.org/10.11896/j.issn.1005-023X.2018.10.014
  材料研究 |
旋转加速喷丸处理18CrNiMo7-6钢的微观结构与力学性能
朱 敏1,吴桂林1,李玉胜2,黄晓旭1
1 重庆大学材料科学与工程学院,重庆 400030;
2 南京理工大学材料科学与工程学院,南京 210094
Microstructure and Mechanical Properties of 18CrNiMo7-6 Steel Processed by Rotationally Accelerated Shot Peening
ZHU Min1, WU Guilin1, LI Yusheng2, HUANG Xiaoxu1
1 School of Materials Science and Engineering, Chongqing University, Chongqing 400030;
2 School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094
下载:  全 文 ( PDF ) ( 5228KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究首次采用一种高效率、低成本的大塑性变形技术——旋转加速喷丸技术(Rotationally accelerated shot peening)对正火后高温回火的18CrNiMo7-6钢进行表面纳米化处理,利用光学显微镜、扫描电子显微镜、电子背散射衍射技术、硬度测试以及拉伸测试等对不同喷丸参数的样品进行了微观组织和力学性能的表征。结果表明,旋转加速喷丸能够成功地在材料表面制备出梯度结构,从样品表面到芯部具有明显的显微组织梯度和硬度梯度;调节喷丸速度可以有效地调控材料显微组织,长时间喷丸易萌生微裂纹;在喷丸速度为40 m/s、喷丸时间为5 min的条件下处理,样品的表面完好,屈服强度提高了57%,达到512 MPa。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱 敏
吴桂林
李玉胜
黄晓旭
关键词:  旋转加速喷丸  18CrNiMo7-6钢  显微组织  力学性能  梯度结构    
Abstract: In the present work, normalized and high temperature tempered 18CrNiMo7-6 steel was firstly subjected to rotationally accelerated shot peening (RASP) processing, which was a low-cost and efficient severe plastic deformation (SPD) technique to produce nanostructured surface-layers of metals. The microstructure of the steel after RSAP processing was characterized by optical microscopy (OM), scanning electron microscopy (SEM), electron back-scattered diffraction (EBSD) techniques, and the mechanical properties were analyzed by microhardness measurements and tensile testing. Simultaneously, the effects of RASP parameters on the microstructural evolution and mechanical properties were analyzed. It is found that RASP successfully produced a steel with structural gradient and it had a obviously microhardness gradient form surface to the inner. Varying the shot peening velocity was an effective way to control the microstructure,while micro-cracks formed easily at the long shot peening time. With a peening velocity of 40 m/s and a peening time of 5 min,the sample had a harden surface without defects and the yield strength was improved by 57% to 512 MPa.
Key words:  rotationally accelerated shot peening    18CrNiMo7-6 steel    microstructure    mechanical properties    gradient structure
出版日期:  2018-05-25      发布日期:  2018-07-06
ZTFLH:  TG178  
基金资助: 国家重点研发计划专项(2016YFB0700403)
通讯作者:  黄晓旭:通信作者,男,1963年生,教授,研究方向为纳米结构材料及其强韧化机理、材料的先进表征技术 E-mail:xiaoxuhuang@cqu.edu.cn   
作者简介:  朱敏:男,1993年生,硕士研究生,研究方向为金属材料的表面纳米化 E-mail:zhumin118hai@163.com
引用本文:    
朱 敏,吴桂林,李玉胜,黄晓旭. 旋转加速喷丸处理18CrNiMo7-6钢的微观结构与力学性能[J]. 《材料导报》期刊社, 2018, 32(10): 1645-1649.
ZHU Min, WU Guilin, LI Yusheng, HUANG Xiaoxu. Microstructure and Mechanical Properties of 18CrNiMo7-6 Steel Processed by Rotationally Accelerated Shot Peening. Materials Reports, 2018, 32(10): 1645-1649.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.10.014  或          https://www.mater-rep.com/CN/Y2018/V32/I10/1645
1 Fang T H, Li W L, Tao N R, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper[J]. Science,2011,331:1587.
2 Cui X P, Qin C, Ji C T, et al. surface nanocrystallization of 0Cr21Mn17Mo2NbN0.83 high-nitrogen austenitic stainless steel induced by mechanical attrition & grinding treatment[J]. Materials Review B:Research Papers,2016,30(6):1(in Chinese).
崔晓鹏,秦超,季长涛,等.机械压磨诱导0Cr21Mn17Mo2NbN0.83高氮奥氏体不锈钢表面纳米化[J].材料导报:研究篇,2016,30(6):1.
3 Gao B, Wang J, Li L H, et al. Study on the structural property of surface mechanical pressure-torsion[J]. Materials Review B:Research Papers,2015,29(3):107(in Chinese).
高波,王进,李丽华,等.金属表面机械扭压处理组织性能研究[J].材料导报:研究篇,2015,29(3):107.
4 Ba D M, Ma S N, Meng F J, et al. Friction and wear behaviors of nanocrystalline surface layer of chrome-silicon alloy steel[J]. Surface and Coatings Technology,2007,202(2):254.
5 Roland T, Retraint D, Lu K, et al. Enhanced mechanical behavior of a nanocrystallised stainless steel and its thermal stability[J]. Materials Science and Engineering: A,2007,445:281.
6 Wu X L, Jiang P, Chen L, et al. Extraordinary strain hardening by gradient structure[J]. Proceedings of the National Academy of Sciences,2014,111(20):7197.
7 Wei Y, Li Y, Zhu L, et al. Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins[J]. Nature Communications,2014,5:3580.
8 Liu G, Lu J, Lu K. Surface nanocrystallization of 316L stainless steel induced by ultrasonic shot peening[J]. Materials Science & Engineering A,2000,286(1):91.
9 Altenberger I, Scholtes B, Martin U, et al. Cyclic deformation and near surface microstructures of shot peened or deep rolled austenitic stainless steel AISI 304[J]. Materials Science & Engineering A,1999,264(1-2):1.
10 Nikitin I, Altenberger I, Maier H J, et al. Mechanical and thermal stability of mechanically induced near-surface nanostructures[J]. Materials Science & Engineering A,2005,403(1):318.
11 Majzoobi G H, Azadikhah K, Nemati J. The effects of deep rolling and shot peening on fretting fatigue resistance of aluminum-7075-T6[J]. Materials Science & Engineering A,2009,516(1):235.
12 Luo K Y, Lu J Z, Zhang Y K, et al. Effects of laser shock proces-sing on mechanical properties and micro-structure of ANSI 304 austenitic stainless steel[J]. Materials Science & Engineering A,2011,528(13):4783.
13 Zhang B H, Zhang X N. Fabrication of nano titanium and its biomechanical property[J]. Materials Review,2007,21(4):129(in Chinese).
张保华,张小农.SMAT纳米钛的组织及力学性能研究[J].材料导报,2007,21(4):129.
14 Chen X H, Lu J, Lu L, et al. Tensile properties of a nanocrystalline 316L austenitic stainless steel[J]. Scripta Materialia,2005,52(10):1039.
15 Wang L M, Wang Z B, Lu K. Grain size effects on the austenitization process in a nanostructured ferritic steel[J]. Acta Materialia,2011,59(9):3710.
16 Li W L, Tao N R, Lu K. Fabrication of a gradient nano-micro-structured surface layer on bulk copper by means of a surface mechanical grinding treatment[J]. Scripta Materialia,2008,59(5):546.
17 Li C, Cui W, Zhang Y. Surface self-nanocrystallization of α+ β titanium alloy by surface mechanical grinding treatment[J]. Metals and Materials International,2017,23(3):512.
18 Wang X, Li Y S, Zhang Q, et al. Gradient structured copper by rotationally accelerated shot peening[J]. Journal of Materials Science & Technology,2017,33(7):758.
19 Liu J X, He Z J, Wang L H, et al. Study on the durable factors of the grain size in 18CrNiMo7-6 by heating and cooling method[J]. Advanced Materials Research,2011,194-196:228.20 Krawczyk J, Pawlowski B, Bala P. Banded microstructure in forged 18CrNiMo7-6 steel[J]. Metallurgy & Foundry Engineering,2009,35(1):45.
21 Dai R Y, Yu Z Q, Liu Z W, et al. Shot peening treatment and cha-racterization of 18CrNiMo7-6 steel after carburizing and quenching[J].Materials for Mechanical Engineering, 2013,37(5):100(in Chinese).
戴如勇,于中奇,刘忠伟,等.渗碳淬火18CrNiMo7-6钢的表面喷丸强化及表征[J].机械工程材料,2013,37(5):100.
22 Fu P, Zhan K, Jiang C. Micro-structure and surface layer properties of 18CrNiMo7-6 steel after multistep shot peening[J]. Materials & Design,2013,51(5):309.
23 Fu P, Jiang C. Residual stress relaxation and micro-structural deve-lopment of the surface layer of 18CrNiMo7-6 steel after shot peening during isothermal annealing[J]. Materials & Design,2014,56(4):1034.
24 Fu P, Jiang C, Ji V. Microstructural evolution and mechanical response of the surface of 18CrNiMo7-6 steel after multistep shot peening during annealing[J]. Materials Transactions,2013,54(12):2180.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[3] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[4] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[5] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[6] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[7] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[8] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[9] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[10] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[11] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[12] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[13] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[14] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[15] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed