Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (6): 34-37    https://doi.org/10.11896/j.issn.1005-023X.2017.06.008
  材料研究 |
水热合成一维α-MoO3纳米棒及其湿敏性能研究
李金涛, 吴玉会, 刘卓, 赵晶, 王生力
河北地质大学实验实践教学中心, 石家庄 050031
Hydrothermal Synthesis of 1-D α-MoO3 Nanorods and Their
Humidity Sensing Properties
LI Jintao, WU Yuhui, LIU Zhuo, ZHAO Jing, WANG Shengli
Experimental Practising &
Teaching Center, Hebei GEO University, Shijiazhuang 050031
下载:  全 文 ( PDF ) ( 1381KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用水热法,以钼酸铵和硝酸为原料合成了一维纳米α-MoO3棒状材料,并利用X射线衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)对其物相及形貌进行了表征。一维α-MoO3纳米棒直径为200~300 nm,长度为5~10 μm。一维α-MoO3纳米棒表现出良好的湿敏性能,所制得的传感器在100 Hz、11%~95%湿度范围内,其复阻抗-相对湿度关系在半对数坐标下有5个数量级的变化,线性度好。元件的恢复和响应时间较短,分别为3 s和35 s,元件的湿滞约为4% RH。利用器件在不同湿度下的阻抗图谱建立了相应的等效电路,分析其电导过程。结果表明,在低湿度范围内,器件传导主要依靠一维α-MoO3材料内少量的自由电子传导以及材料本身束缚电荷的极化;在高湿度范围内,吸附水分子的分解和极化所引起的离子导电占主导地位。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李金涛
吴玉会
刘卓
赵晶
王生力
关键词:  一维α-MoO3  纳米棒  水热法  湿敏    
Abstract: 1-D α-MoO3 nanorods were synthesized under hydrothermal conditions by using (NH4)6Mo7O24·4H2O and HNO3 as raw materials. X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to characterize phase and morphology of the samples. The width of the α-MoO3 nanorod was about 200-300 nm, and the length was about 5-10 μm. 1-D α-MoO3 nanorods showed good humility sensing properties. The curve of impedance vs. relative humility (RH) changed near five orders of magnitude with good linearity, when RH varied from 11% to 95% at 100 Hz. The response and recovery time of the sensor were about 3 s and 35 s, respectively. The maximum hysteresis was only 4% RH at 100 Hz. In order to explain the conduction process of the sensor, corresponding equivalent circuits were established by complex impedance plots of the device at various humidity ranges. In low RH range, the conduction process was dominated mainly by conduction (charge carriers) and polarization (bounded electrons) of the grains of 1-D α-MoO3 nanorods, while in high RH range, by decomposition and polarization of the absorbed water.
Key words:  1-D α-MoO3    nanorod    hydrothermal synthesis    humidity sensor
出版日期:  2017-03-25      发布日期:  2018-05-02
ZTFLH:  O649.4  
基金资助: 河北地质大学博士科研启动基金(BQ201501);国家级地学实验教学示范中心
作者简介:  李金涛:女,1987年生,博士,助理研究员,主要研究方向为纳米功能材料制备及其敏感性能,E-mail:lijintao575@126.com
引用本文:    
李金涛, 吴玉会, 刘卓, 赵晶, 王生力. 水热合成一维α-MoO3纳米棒及其湿敏性能研究[J]. 《材料导报》期刊社, 2017, 31(6): 34-37.
LI Jintao, WU Yuhui, LIU Zhuo, ZHAO Jing, WANG Shengli. Hydrothermal Synthesis of 1-D α-MoO3 Nanorods and Their
Humidity Sensing Properties. Materials Reports, 2017, 31(6): 34-37.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.06.008  或          https://www.mater-rep.com/CN/Y2017/V31/I6/34
1 Rubinger C P L, Martins C R, De Paoli M A, et al. Sulfonated polystyrene polymer humidity sensor: Synthesis and characterization [J]. Sens Actuators B,2007,123(1):42.
2 Li L Y, Dong Y F, Jiang W F, et al. High-performance capacitive humidity sensor based on silicon nanoporous pillar array [J]. Thin Solid Films,2008,517(2):948.
3 Fang Xiangyi, Wu Mingtang, Jiang Yun, et al. Manufacture and humidity sensitivity of porous SiO2 thick film humidity sensors [J]. Electron Compon Mater,1995,14(5):19(in Chinese).
方湘怡,武明堂,姜芸,等.多孔SiO2厚膜湿度传感器的制造及其湿敏特性[J].电子元件与材料,1995,14(5):19.
4 Yang Z, Zhang Z, Liu K, et al. Controllable assembly of SnO2 nanocubes onto TiO2 electrospun nanofibers toward humidity sen-sing applications [J]. J Mater Chem C,2015,3(26):6701.
5 Pascariu P, Airinei A, Olaru N, et al. Microstructure, electrical and humidity sensor properties of electrospun NiO-SnO2 nanofibers [J]. Sens Actuators B,2016,222:1024.
6 Wei G, Qin W, Zhang D, et al. Synthesis and field emission of MoO3 nanoflowers by a microwave hydrothermal route [J].J Alloys Compd,2009,481(1-2):417.
7 Sinaim H, Phuruangrat A, Thongtem S, et al. Synthesis and cha-racterization of heteronanostructured Ag nanoparticles/MoO3 nanobelts composites [J]. Mater Chem Phys,2012,132(2-3):358.
8 Li Y B, Bando Y, Golberg D, et al. Field emission from MoO3 nanobelts [J]. Appl Phys Lett,2002,81(26):5048.
9 Comini E, Yubao L, Brando Y, et al. Gas sensing properties of MoO3 nanorods to CO and CH3OH [J]. Chem Phys Lett,2005,407(4-6):368.
10 Bai S, Chen S, Chen L, et al. Ultrasonic synthesis of MoO3 nanorods and their gas sensing properties [J]. Sens Actuators B,2012,174(11):51.
11 Wang Q, Sun J, Wang Q, et al. Electrochemical performance of α-MoO3-In2O3 core-shell nanorods as anode materials forlithium-ion batteries [J]. J Mater Chem A,2015,3(9):5083.
12 Wang Q, Wang Q, Zhang D, et al. Core-shell α-Fe2O3@α-MoO3 nanorods as lithium-ion battery anodes with extremely high capacity and cyclability [J]. Chem Asian J,2014,11(9):3299.
13 Fang L, Shu Y, Wang A, et al. Green synthesis and characterization of anisotropic uniform single-crystal α-MoO3 nanostructures [J]. J Phys Chem C,2007,111(6):2401.
14 Jiang D, Wang Y, Wei W, et al. Xylene sensor based on α-MoO3 nanobelts with fast response and low operating temperature [J]. RSC Adv,2015,5(24):18655.
15 Li X L, Liu J F, Li Y D. Low-temperature synthesis of large-scale single-crystal molybdenum trioxide (MoO3) nanobelts [J]. Appl Phys Lett,2002,81(25):4832.
16 Chithambararaj A, Bose A C. Investigation on structural, thermal, optical and sensing properties of meta-stable hexagonal MoO3 nanocrystals of one dimensional structure [J]. Beilstein J Nanotechnol,2011,2(2):585.
17 Jittiarporn P, Sikong L, Kooptarnond K, et al. Effects of precipitation temperature on the photochromic properties of h-MoO3 [J]. Ceram Int,2014,40(8):13487.
18 Wang Wendi, Xu Huayun, Liu Jinhua, et al. Hydrothermal synthesis of MoO3 nanobelts and their electrochemical characterization [J]. J Funct Mater,2006,37(3):434(in Chinese).
王文帝,徐化云,刘金华,等.MoO3纳米纤维电极材料的水热合成和电化学表征[J].功能材料,2006,37(3):434.
19 Kuang Q, Lao C, et al. High-sensitivity humidity sensor based on a single SnO2 nanowire [J]. J Am Chem Soc,2007,129(19):6070.
20 Kolmakov A, Moskovits M. Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures [J]. Annu Rev Mater Res,2004,35(34):151.
21 Holc J, Sluncko J, Hrovat M. Temperature characteristics of electrical properties of (Ba,Sr)TiO3 thick film humidity sensors [J]. Sens Actuators B,1995,26(1-3):99.
22 Wang J, Xu B K, Ruan S P, et al. Preparation and electrical properties of humidity sensing films of BaTiO3/polystrene sulfonic sodium [J]. Mater Chem Phys,2003,78(3):746.
23 Wang J, Su M Y, Qi J Q, et al. Sensitivity and complex impedance of nanometer zirconia thick film humidity sensors [J]. Sens Actuators B,2009,139(2):418.
[1] 郭洪兵, 刘曰利. 基于Cs4PbBr6纳米晶的超高灵敏度电阻型湿敏传感器[J]. 材料导报, 2025, 39(3): 24040002-7.
[2] 林青, 黎水平, 缪志鹏, 丁忆, 梁栋, 王昭, 张小娟. Au@α-Fe2O3纳米棒的制备及光催化性能[J]. 材料导报, 2024, 38(3): 22050040-6.
[3] 张理元, 张菁菁, 吴娜, 沈如倩. 氟化对钛锂离子筛制备及性能的影响[J]. 材料导报, 2024, 38(18): 22090255-8.
[4] 涂盛辉, 钟荣福, 张超, 刘桉如, 吴文彬, 杜军. ZIF-8@TiO2复合材料的制备及光催化性能[J]. 材料导报, 2024, 38(16): 23030150-6.
[5] 罗宁, 高凤雨, 陈都, 张辰骁, 段二红, 赵顺征, 易红宏, 唐晓龙. CeMn复合氧化物的制备及氯苯催化氧化性能[J]. 材料导报, 2024, 38(16): 23050133-9.
[6] 裴胤昌, 莫胜鹏, 解庆林, 陈南春. 红辉沸石两步水热制备高品质X型分子筛及其高效吸附Cd2+、Ni2+性能研究[J]. 材料导报, 2023, 37(24): 22050310-9.
[7] 孙慧慧, 周子吉, 曹文, 王群, 周忠华, 黄悦. 玻璃表面梯度多孔减反射膜层的水热制备及水刻蚀剂添加Na2HPO4对膜层结构的影响[J]. 材料导报, 2023, 37(22): 22060210-7.
[8] 王南南, 李继文, 刘伟, 李武会, 张玉栋, 雷金坤, 徐流杰. 铝钼共掺杂氧化锌粉末的制备及光电性能研究[J]. 材料导报, 2022, 36(4): 20090212-7.
[9] 陈刚, 熊施权, 吕洪, 郝传璞. 电解阳极催化剂用介孔Sb、Co掺杂SnO2载体的研究[J]. 材料导报, 2022, 36(3): 20110206-6.
[10] 何盈至, 赵谦, 王世荣, 刘红丽, 张天永, 李彬, 李祥高. 双亲型二氧化钛纳米粒子的制备及高稳定非水分散性研究[J]. 材料导报, 2022, 36(20): 21060093-6.
[11] 梁旭, 韩露, 雷雅京, 黎雯, 黄瑞滨, 陈荣生, 倪红卫, 詹玮婷. 基于氧化石墨烯/ZnO纳米阵列的无酶葡萄糖传感器[J]. 材料导报, 2022, 36(13): 21010061-6.
[12] 李增鹏, 戴剑锋, 成晨, 冯伟. BiFeO3多铁材料形貌与磁光性能调控研究[J]. 材料导报, 2022, 36(11): 20120114-7.
[13] 李雅洁, 刘剑, 徐晨, 邢镔. 水热法制备固态电解质Li3xLa2/3-xTiO3粉末[J]. 材料导报, 2021, 35(z2): 8-12.
[14] 杜广智, 张骞, 廖继飞, 林玉, 伍凡, 向将来, 王晓如, 张瑞阳. 水热处理增强磷酸钴催化臭氧分解性能的研究[J]. 材料导报, 2021, 35(z2): 81-85.
[15] 王三胜, 王莹. 石墨提纯工艺研究进展综述和新技术展望[J]. 材料导报, 2020, 34(Z2): 147-151.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed