Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (4): 52-55    https://doi.org/10.11896/j.issn.1005-023X.2017.04.012
  材料研究 |
冷喷涂Zn粉后5083铝合金的中温钎焊研究*
何培龙1, 程方杰1,2, 齐书梅1, 肖兵1, 赵欢1
1 天津大学材料科学与工程学院, 天津 300072;
2 天津大学现代连接技术天津市重点实验室, 天津 300072
Study on Middle Temperature Brazing of 5083 Aluminum Alloy After
Depositing Zn Coatings Produced by Cold Gas Dynamic Spray
HE Peilong1, CHENG Fangjie1,2, QI Shumei1, XIAO Bing1, ZHAO Huan1
1 School of Materials Science and Engineering, Tianjin University, Tianjin 300072;
2 Tianjin Key Laboratory of Advanced Welding and Joining, Tianjin University, Tianjin 300072
下载:  全 文 ( PDF ) ( 1410KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以添加了5%(质量分数,下同)CsF-AlF3共晶钎剂的Zn粉为原料,采用冷喷涂技术在5083铝合金表面制备涂层,喷涂后的5083铝板在530 ℃进行钎焊连接。采用扫描电子显微镜结合能谱仪对涂层的显微结构及钎焊后的接头组织形貌进行观察与分析。结果表明:涂层与5083基体连接致密,钎剂颗粒呈絮状存在于Zn粒子交界面处;由于涂层对5083基体的保护,钎焊时5083基体表面没有出现Mg元素上浮现象,表面未形成复杂的氧化膜,530 ℃喷涂后的5083与1060可成功实现连接;钎焊接头组织均匀,主要由α铝基固溶体和β富锌基固溶体组成,存在少量孔洞缺陷。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何培龙
程方杰
齐书梅
肖兵
赵欢
关键词:  5083铝合金  氧化膜  中温钎焊  冷喷涂    
Abstract: With Zn and 5wt% CsF-AlF3 eutectic flux mixed powders as raw materials, coatings on 5083 aluminum alloy were prepared by cold gas dynamic spray, then the 5083 aluminum alloy deposited coatings were brazed at 530 ℃.The microstructure and composition of the coatings and brazing joint were characterized by SEM and EDS. The results reveal that the combination between coatings and 5083 aluminum alloy substrate is tight, the CsF-AlF3 eutectic flux particles appear at the interface of Zn particles. Due to the protection of coatings, the Mg element isn′t enriched at the 5083 aluminum alloy outermost surface during brazing and the complex oxide film doesn′t form, the bonding of 5083 aluminum alloy deposited coatings and 1060 aluminum alloy can be realized. The brazing joint has a homogeneous microstructure consisting of aluminum based solid solution (α phase) and zinc based solid solution (β phase), only a little of cavities defects occur.
Key words:  5083 aluminum alloy    oxide film    middle temperature brazing    cold spray
出版日期:  2017-02-25      发布日期:  2018-05-02
ZTFLH:  TG454  
基金资助: *国家自然科学基金(51275351);天津市自然科学基金重点项目(13JCZDJC33500)
通讯作者:  程方杰:通讯作者,男,1971年生,博士,教授,主要研究方向为先进连接工艺方法 E-mail:chfj@tju.edu.cn   
作者简介:  何培龙:男,1992年生,硕士研究生,主要研究方向为中温铝钎剂材料设计 E-mail:hepeilong007@tju.edu.cn
引用本文:    
何培龙, 程方杰, 齐书梅, 肖兵, 赵欢. 冷喷涂Zn粉后5083铝合金的中温钎焊研究*[J]. 《材料导报》期刊社, 2017, 31(4): 52-55.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.04.012  或          https://www.mater-rep.com/CN/Y2017/V31/I4/52
1 Cheng Y Y. Medium-temperature vacuum brazing of heat-treatable strengthening aluminum alloy [J]. Aeronaut Manuf Technol,2010(4):26(in Chinese).
程耀永.可热处理强化铝合金中温真空钎焊技术[J]. 航空制造技术,2010(4):26.
2 Wang Z R, Han L, Xu D R, et al. Research status of soldering of aluminum and its alloys[J]. Modern Welding Technol,2014(9):12(in Chinese).
汪再如, 韩磊, 徐道荣, 等. 铝及其合金软钎焊技术的研究现状[J]. 现代焊接,2014(9):12.
3 Xue S B, Chen W H, Lv X C, et al. Mechanism of brazing flux rea-cting with oxide film of LY12 aluminum alloy [J]. Chin J Nonferrous Met,2004,14(4):543(in Chinese).
薛松柏, 陈文华, 吕晓春,等. LY12铝合金氧化膜与钎剂的反应机制[J]. 中国有色金属学报,2004,14(4):543.
4 Zhu H, Xue S B, Sheng Z. Mechanism of CsF-AlF3 and KF-AlF3 fluxes reacting with oxide films of 6063 aluminum alloy [J]. Trans China Welding Inst,2009,30(9):13(in Chinese).
朱宏,薛松柏,盛重.6063 铝合金氧化膜与CsF-AlF3及KF-AlF3钎剂的反应机制[J]. 焊接学报,2009,30(9):13.
5 Cheng F J, Zhao H W, Wang Y, et al. Evolution of surface oxide film of typical aluminum alloy during medium-temperature brazing process[J]. Transactions of Tianjin University,2014,20(1):54.
6 Xiao B, Wang D P, Cheng F J, et al. Oxide film on 5052 aluminium alloy: Its structure and removal mechanism by activated CsF-AlF3 flux in brazing[J]. Appl Surf Sci,2015,337:208.
7 Panda Emila, Jeurgens Lars, Richter Gunther, et al. The amorphous to crystalline transition of ultrathin (Al,Mg)-oxide films grown by thermal oxidation of AlMg alloys: A high-resolution transmission electron microscopy investigation[J]. J Mater Res,2010,25(5):871.
8 Zhang L, Xue S B, Han Z J, et al. Analysis on high strength Al-Li alloy joints brazed in furnace [J]. Trans China Welding Inst,2006,27(8):71(in Chinese).
张玲, 薛松柏, 韩宗杰, 等. 高强铝锂合金炉中钎焊及接头组织分析[J]. 焊接学报,2006,27(8):71.
9 Lu W J, Fan B Z, Yu W Y, et al. Study of preparation and property of AlF3-KF-CsF-ZnCl2 flux [J]. Welding Technol,2014,43(6):52(in Chinese).
路文江, 范百震, 俞伟元, 等, AlF3-KF-CsF-ZnCl2钎剂的研制及性能研究[J]. 焊接技术,2014,43(6):52.
10 Cheng F J, Yang J X, Zhao H W, et al. Relationship of phase structures and melting characteristics of KF-CsF-AlF3 aluminum flux [J]. Trans China Welding Inst,2013,34(6):5(in Chinese).
程方杰, 杨俊香, 赵海微, 等. 低铯含量KF-CsF-AlF3铝钎剂的物相结构与熔化特性的关系[J]. 焊接学报,2013,34(6):5.
11 Luo W, Wang L T, Wang Q M, et al. A new filler metal with low contents of Cu for high strength aluminum alloy brazed joints[J]. Mater Des,2014,63(21):263.
12 Li Y X, Leng X S, Cheng S, et al. Microstructure design and dissolution behavior between 2024 Al/Sn with the ultrasonic-associated soldering [J]. Mater Des,2012,40:427.
13 Nagaoka Toru, Morisada Yoshiaki, Fukusumi Masao, et al. Selection of soldering temperature for ultrasonic-assisted soldering of 5056 aluminum alloy using Zn-Al system solders[J]. J Mater Process Technol,2011,211(9):1534.
14 Xue S B, Dong J, Lv X C, et al. Brazing technology of LY12Al-alloy at middle temperature[J]. Trans China Welding Inst,2003,24(3):21(in Chinese).
薛松柏, 董健, 吕晓春, 等. LY12铝合金中温钎焊技术[J]. 焊接学报,2003,24(3):21.
15 Lee S W, Yeh J W. Super plasticity of 5083 alloys with Zr and Mn additions produced by reciprocating extrusion[J]. Mater Sci Eng A,2007,460-461:409.
16 Yuan X G, Liu Y X, Wang Y S, et al. Influence of heat treatment on interfacial diffusion of Al alloy cold spraying coating on magne-sium alloy[J]. Trans China Welding Inst,2007,28(11):9(in Chinese).
袁晓光, 刘彦学, 王怡嵩, 等.镁合金表面冷喷涂铝合金的界面扩散行为[J]. 焊接学报,2007,28(11):9.
17 Schmidt T, Gartner F, Assadi H, et al. Development of a genera-lized parameter window for cold spray deposition[J]. Acta Mater,2006,54(3):729.
[1] 张天刚, 潘启越, 张志强, 曹思雨. 铝合金表面阳极氧化膜激光清洗机制分析[J]. 材料导报, 2024, 38(24): 23100128-10.
[2] 郭伟玲, 邢志国, 李鹏, 马国政, 王海斗. 冷喷涂铜基复合涂层及后处理技术的研究现状[J]. 材料导报, 2024, 38(19): 23010049-13.
[3] 王慧鹏, 李鹏, 王喜茂, 郭伟玲, 马国政, 王海斗. 冷喷涂温度对Cu-Ti3AlC2复合涂层微观组织及摩擦学性能的影响[J]. 材料导报, 2024, 38(15): 23030288-9.
[4] 王喜茂, 赵运才, 郭伟玲, 马国政, 王慧鹏, 王海斗. 冷喷涂铜基陶瓷复合涂层沉积机理与结构性能优化研究进展[J]. 材料导报, 2023, 37(24): 22040223-10.
[5] 李多娇, 程春龙, 乐启炽, 陈亮, 闫家仕. 镁合金氧化机理研究进展[J]. 材料导报, 2023, 37(1): 20120108-9.
[6] 陈小丽, 谭敏, 罗文东. 温度对铝锂合金阳极氧化膜结构及耐蚀性的影响[J]. 材料导报, 2022, 36(Z1): 21120067-5.
[7] 陈文元, 谈辉, 程军, 朱圣宇, 杨军. 冷喷涂铜基复合涂层摩擦学性能研究进展与展望[J]. 材料导报, 2022, 36(7): 21080083-7.
[8] 许骏杰, 康嘉杰, 岳文, 周永宽, 朱丽娜, 付志强, 佘丁顺. 纳秒激光制备Fe基非晶合金涂层表面织构的疏水性研究[J]. 材料导报, 2022, 36(7): 21120134-6.
[9] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[10] 张林伟, 余玖明, 宁先进, 王全胜. 预氧化真空度对冷喷涂CoNiCrAlY涂层高温氧化行为的影响[J]. 材料导报, 2022, 36(17): 21030092-5.
[11] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[12] 钟晓聪, 陈芳会, 王瑞祥, 徐志峰. 硫酸体系铅基阳极稳定性研究进展[J]. 材料导报, 2019, 33(17): 2862-2867.
[13] 杨理京,李争显,黄春良,王培,姚建华. 激光辅助冷喷涂制备高硬度材料涂层的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 412-417.
[14] 陈正涵,孙晓峰,李占明,史玉鹏. 镍铝青铜基冷喷涂Cu402F与Cu涂层的力学性能[J]. 《材料导报》期刊社, 2018, 32(10): 1618-1622.
[15] 王锋. 冷喷涂中颗粒形状和温度对其沉积过程的影响*[J]. 《材料导报》期刊社, 2017, 31(14): 138-142.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed