Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (2): 41-45    https://doi.org/10.11896/j.issn.1005-023X.2017.02.009
  材料研究 |
电子束退火法制备ZnO薄膜*
李艳丽1,2, 许壮3, 李辉4, 孔祥东1, 韩立1, 张雪娜1,2
1 中国科学院电工研究所电子束曝光技术研究组, 北京 100190;
2 中国科学院大学, 北京 100049;
3 兰州大学物理科学与技术学院, 兰州 730000;
4 中国科学院电工研究所太阳电池技术研究组, 北京 100190;
Preparation of ZnO Thin Films by Electron Beam Annealing Method
LI Yanli1,2, XU Zhuang3, LI Hui4, KONG Xiangdong1, HAN Li1, ZHANG Xuena1,2
1 Electron Beam Lithography Technology Research Group, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190;
2 University of Chinese Academy of Sciences, Beijing 100049;
3 School of Physical Science and Technology, Lanzhou University, Lanzhou 730000;
4 Group of Solar Cell Technology, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190;
下载:  全 文 ( PDF ) ( 1729KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用溶胶-凝胶法制备出ZnO的凝胶前驱膜,用电子束退火取代传统炉子退火,对前驱膜进行后处理,退火时固定电子束加速电压为10 kV,退火时间为5 min,调节聚焦束流和电子束束流,使退火温度在600~900 ℃范围内变化。扫描电镜(SEM)、X射线衍射(XRD)、原子力显微镜(AFM)和压电力显微镜(PFM)的测试结果表明,运用电子束退火法可制备出晶粒尺寸小于30 nm、沿(002)择优取向、具有压电效应的六方ZnO薄膜,且随着退火温度的升高,晶粒尺寸逐渐变大,薄膜的结晶性和取向变好,压电效应越来越明显。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李艳丽
许壮
李辉
孔祥东
韩立
张雪娜
关键词:  电子束  退火  溶胶-凝胶  ZnO  薄膜    
Abstract: The ZnO precursor film was prepared by sol-gel method and annealed by the electron beam which replaced the conventional furnace. The accelerating voltage was fixed at 10 kV and the annealing duration was fixed at 5 min. The annealing temperature was within the range of 600 ℃ to 900 ℃ by adjusting the focus beam current and electron beam current . The results of scanning electron microscopy (SEM), X-ray diffraction (XRD), atomic force microscopy (AFM) and piezoelectric force microscopy (PFM) showed that the annealed ZnO thin film was a kind of microcrystalline film, grew along the preferred (002) peak and presented piezoelectric effect. With the increase of annealing temperature, the grain size increased gradually, the crystallinity and orientation of thin film were better, the piezoelectric effect was more and more obvious.
Key words:  electron beam    annealing    sol-gel    ZnO    thin film
出版日期:  2017-01-25      发布日期:  2018-05-02
ZTFLH:  TB34  
  O649  
基金资助: *国家自然科学基金(51177160;51472239)
作者简介:  李艳丽:女,1988年生,博士研究生,主要研究方向为电子束直写功能微结构 E-mail:liyanli@mail.iee.ac.cn 孔祥东:通讯作者,男,1966年生,副研究员,主要研究方向为电子束相关设备及应用 E-mail:slkongxd@mail.iee.ac.cn
引用本文:    
李艳丽, 许壮, 李辉, 孔祥东, 韩立, 张雪娜. 电子束退火法制备ZnO薄膜*[J]. 《材料导报》期刊社, 2017, 31(2): 41-45.
LI Yanli, XU Zhuang, LI Hui, KONG Xiangdong, HAN Li, ZHANG Xuena. Preparation of ZnO Thin Films by Electron Beam Annealing Method. Materials Reports, 2017, 31(2): 41-45.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.02.009  或          https://www.mater-rep.com/CN/Y2017/V31/I2/41
1 Bagnall D M, Chen Y F, Zhu Z, et al. Optically pumped lasing of ZnO at room temperature[J]. Appl Phys Lett,1997,70(17):2230.
2 Nishii Junya, Hossain Faruque M, Takagi Shingo, et al. High mo-bility thin film transistors with transparent ZnO channels[J]. Jpn J Appl Phys,2003,42(4A):L347.
3 Minemoto T, Negami T, Nishiwaki S, et al. Preparation of Zn1-x-MgxO films by radio frequency magnetron sputtering[J]. Thin Solid Films,2000,372(1-2):173.
4 Yanagitani T, Kiuchi M, Matsukawa M, et al. Characteristics of pure-shear mode BAW resonators consisting of (1120) textured ZnO films[J]. IEEE Trans Ultrasonics Ferroelectrics Frequency Control,2007,54(8):1680.
5 Raj V B, Singh H, Nimal A T, et al. Origin and role of elasticity in the enhanced DMMP detection by ZnO/SAW sensor[J]. Sens Actuators B:Chem,2015,207:375.
6 Luo Jingting, Zhong Xin, Zhu Maodong, et al. Growth of ZnO thin film and its surface acoustic wave properties[J]. J Shenzhen University Science and Engineering,2015,32(1):17(in Chinese).
罗景庭,钟鑫,朱茂东,等.ZnO薄膜生长及声表面波性能研究[J]. 深圳大学学报理工版,2015,32(1):17.
7 Lee H Y, Huang H L. Performance improvement of pentacene-doped P3HT: PCBM inverted polymer solar cells with AZO nanorod array passivated using photoelectrochemical technique[J].Org Electron,2014,15(7):1362.
8 Jiang C Y, et al. Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode[J]. Appl Phys Lett,2007,90(26):263501.
9 Yadav Kavita, Gahlaut Shashank K, Mehta B R, et al.Photoluminescence based H2 and O2 gas sensing by ZnO nanowires[J]. Appl Phys Lett,2016,108(7):071602.
10 Amin Muhammad, Shah Nazar Abbas, Bhatti Arshad Saleem, et al. Effects of Mg doping on optical and CO gas sensing properties of sensitive ZnO nanobelts[J]. Cryst Eng Comm,2014,16(27):6080.
11 Dong Huike, Han Shuai, Wang Fei, et al. Preparation and gas-phase photocatalytic property study of nano ZnO[J]. Guangzhou Chem Ind,2015,43(7):92(in Chinese).
董慧科,韩帅,王菲,等.纳米ZnO的制备及气相光催化性能研究[J].广州化工,2015,43(7):92.
12 Qu Hua. SnO2 modified nano-ZnO photocatalyst and its catalytic performance for degradation of nonyphenol ethoxylate-10[J]. J Lanzhou University:Natural Sciences,2012,48(5):139(in Chinese).
曲华. SnO2改性纳米ZnO光催化降解NPE-10[J].兰州大学学报:自然科学版,2012,48(5):139.
13 Yu Changlin, Yang Kai, Yu Jimmy C, et al. Effects of rare earth Ce doping on the structure and photocatalytic performance of ZnO[J]. Acta Phys-Chim Sin,2011,27(2):505(in Chinese).
余长林,杨凯,余济美,等.稀土Ce掺杂对ZnO结构和光催化性能的影响[J]. 物理化学学报,2011,27(2):505.
14 Jing Liqiang, Wang Dejun,Wang Baiqi, et al. Effects of noble metal modification on surface oxygen composition, charge separation and photocatalytic activity of ZnO nanoparticles[J]. J Mol Catal A: Chem,2006,244(1):193.
15 Height Murray J, Pratsinis Sotiris E, Mekasuwandumrong Okorn, et al. Ag-ZnO catalysts for UV-photodegradation of methylene blue[J]. Appl Catal B: Environ,2006,63(3):305.
16 Yang Jingchuan, Pei Yanli, Hu Ruiqing, et al. Morphology controlled synthesis of crystalline ZnO film by MOCVD: From hexagon to rhombus[J]. Cryst Eng Comm,2012,14(24):8345.
17 Wei X Q, et al. Comparative study on structural and optical properties of ZnO thin films prepared by PLD using ZnO powder target and ceramic target[J]. Opt Laser Technol,2009,41(5):530.
18 Ying Minju, Cheng Wei, Wang Xiaoxiao, et al. Surface-polarity-dependent ferromagnetism in arsenic-implanted ZnO films prepared by MBE[J]. Mater Lett,2015,144:12.
19 Ivanova T, Harizanova A, Koutzarova T, et al. Study of ZnO sol-gel films: Effect of annealing[J]. Mater Lett,2010,64(10):1147.
20 Zhang Yidong, Mi Liwei, Li Qingyu, et al. Investigation on nano-frictional performance of glucose-assisted ZnO sol-gel film on quartz substrate[J]. Wear,2012,294:313.
21 Xie Xuewu. The investigation of preparation process and properties of ZnO films via sol-gel technique[D]. Hefei:University of Science and Technology of China,2009(in Chinese).
谢学武.ZnO薄膜的溶胶凝胶法制备工艺及其性能的研究[D].合肥:中国科学技术大学,2009.
22 Nunes Arthur C, Fragomeni James M. The low pressure gas effects on the potency of an electron beam on ceramic fabric materials for space welding[J].Acta Astronaut,2002,50(1):13.
23 Zhou Chucai. Multiple scanning electron beam annealing[J]. Microfabric Technol,1983(2):57(in Chinese).
周楚材.多次扫描电子束退火[J].微细加工技术,1983(2):57.
24 Kong Xiangdong, Dai Qian, Li Han, et al. Fabrication of superconducting magnesium diboride thin films by electron beam annealing[J]. Supercond Sci Technol,2011,24:105013.
25 Dai Qian. Fabrication MgB2 thin film by electron-beam annealing method and the preparation of ultra thin MgB2 film[D]. Beijing:Peking University,2013(in Chinese).
戴倩.电子束退火法制备MgB2超导薄膜和MgB2超薄膜的制备[D].北京:北京大学,2013.
26 Caglar M, Ruzgar S. Influence of the deposition temperature on the physical properties of high electron mobility ZnO films by sol-gel process[J]. J Alloys Compd,2015,644:101.
27 Hui Wenyuan. Fabrication of PZT thin film and research on PZT thin film hydrogen annealing[D]. Shanghai:Fudan University,2012(in Chinese).
惠文渊.锆钛酸铅PZT薄膜制备及氢气退火研究[D].上海:复旦大学,2012.
28 Xu Hengxing, et al. Preparation and charaterization of ZnO piezoe-letric film[J]. J Synth Cryst,2009,38(4):880(in Chinese).
许恒星,等.ZnO压电薄膜的制备与性能表征[J]. 人工晶体学报,2009,38(4):880.
[1] 温强, 李向成, 花银群, 关庆丰, 蔡杰. 强流脉冲电子束表面改性技术及其在热障涂层改性中的研究进展[J]. 材料导报, 2025, 39(3): 23090070-11.
[2] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[3] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[4] 杨晨光, 王秀峰. 硅基SiC薄膜制备与应用研究进展[J]. 材料导报, 2024, 38(7): 23010118-14.
[5] 杜金晶, 孙晔, 朱军, 李倩, 王斌, 刘景田, 孟晓荣. 五氧化二钒薄膜材料制备方法研究进展[J]. 材料导报, 2024, 38(5): 22100297-9.
[6] 谭海星, 林剑荣, 黄培源, 彭憬怡, 刘思, 陈建文, 徐华, 肖鹏. 柔性氧化物薄膜晶体管栅绝缘层的研究进展[J]. 材料导报, 2024, 38(23): 23050204-9.
[7] 何东青, 冯子涵, 郑文文, 李文生, 尚伦霖. Cr3C2-NiCr/AlCrN复合涂层高温摩擦学行为研究[J]. 材料导报, 2024, 38(21): 23060112-7.
[8] 赵波, 柳俊. 原子层/分子层沉积技术及其在半导体先进工艺中的应用[J]. 材料导报, 2024, 38(20): 23030081-12.
[9] 王雪怡, 王智远, 余伟, 周冰鑫, 徐榕, 杨兴东, 何辉超, 贾碧. 高压辅助溶胶-凝胶法制备La掺杂TiO2光催化剂及其可见光降解甲基橙研究[J]. 材料导报, 2024, 38(2): 22080236-5.
[10] 丁诗娟, 崔玲娜, 刘跃军. 拉伸成膜工艺诱导聚乳酸结晶行为的研究进展[J]. 材料导报, 2024, 38(18): 23030182-9.
[11] 吴长军, 朱付成, 王权, 彭浩平, 刘亚, 苏旭平. 600~1 000 ℃退火处理对FCC型CoxFeMnNi3-x合金组织演变及耐蚀性的影响[J]. 材料导报, 2024, 38(18): 23080153-7.
[12] 马云路, 杨劼人, 刘泽栋, 陈瑞润. TiAl金属间化合物定向技术研究进展[J]. 材料导报, 2024, 38(15): 23100177-12.
[13] 贾建, 罗俊鹏, 张浩鹏, 闫婷, 侯琼, 张义文. W元素在新型镍基粉末高温合金中的强化作用[J]. 材料导报, 2024, 38(15): 23110103-6.
[14] 黄勇, 郭冲霄, 倪佳苗, 刘悦, 范同祥. 金属催化辅助无转移石墨烯薄膜制备技术研究进展[J]. 材料导报, 2024, 38(15): 23050126-15.
[15] 李伟, 王洪利, 刘学琰, 范智禹, 吴怡逸, 聂登攀, 陶文亮. 表面疏油Al2O3陶瓷膜的制备及表征[J]. 材料导报, 2024, 38(13): 22120002-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed