Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (2): 142-149    https://doi.org/10.11896/j.issn.1005-023X.2017.02.030
  计算模拟 |
注塑充模聚合物流动形态与力学行为分子机制研究*
曹文华, 辛勇, 刘东雷
南昌大学机电工程学院, 南昌 330031;
Research on Flow Pattern and Molecular Mechanisms of Polymer Molten During Injection Filling Stage
CAO Wenhua, XIN Yong, LIU Donglei
School of Mechanical & Electrical Engineering, Nanchang University, Nanchang 330031;
下载:  全 文 ( PDF ) ( 2561KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以聚甲基丙烯酸甲酯(Polymeric methyl methacrylate,PMMA)为实验材料,基于分子动力学模拟实验研究了注塑成型聚合物充模流动与力学行为的分子机制。构建包含10条聚合度为20的无规PMMA分子链所构成的链团模型,基于能量最小化与SA算法实现了体系能量初始化;基于周期性边界,引入COMPASS从头算分子力场及Velocity-Verlet算法,实现了PMMA胞元在恒温平面流场中的流态与力学行为模拟实验。结果表明,PMMA充模与形变过程首先需要克服包含体系内能、分子链松弛与解缠在内的“活化能”,且存在时间和应力阈值,前者体现了瞬时加载内能协调效应,后者对应于高剪切力作用下分子松弛与解缠现象。体系C原子回转半径分布表明剪切力的作用使得高分子沿流场方向取向排布,剪切力越大则取向越明显,剪切力过大则分子链将断裂而弹性恢复。MSD结果揭示了熔态聚合物充模流动的实质是大分子链定向迁移和取向排布协调运动的结果,且进一步验证了“活化能”的存在,克服这一制约之后大分子链的迁移效应才变得明显,且迁移速率随剪切应力的增大呈非线性增大变化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹文华
辛勇
刘东雷
关键词:  注塑成型  形态演化  力学行为  分子模拟    
Abstract: With the example of the amorphous polymethyl methacrylate (PMMA) polymer material, the molecular dynamics simulation experiments were performed to study the flowing morphology and mechanical behavior of the macromolecular during the injection molding produce. A cubic PMMA cell consisting of 10 molecular chains of 20 units was constructed. The energy initialization was performed using the energy minimization method followed by the Simulated Anneal method. By coupled with the periodic boundary conditions, COMPASS (condensed-phase optimized molecular potentials for atomistic simulation studies) force field and the Velocity-Verlet algorithm, the simulation was launched with isothermal conditions. The results indicate the deformation of the chains cell need first to overcome the “activation energy”, involving the internal energy, relation and unwrapping energy. There was a time and a stress threshold during the filling stage. The former presents the coordination course of the internal energy with a transitional loaded condition, and the later reveals the relaxation and disentanglement of the flexible chains with a higher shear stress loaded. The radius of gyration distributions of the C atom in main chains show the macromolecular gives an orientation direction with the flowing direction under the loaded conditions. The bigger of the shear stress, the more sensible of the orientation. While the excessive shear stress leads to the macromolecular break then elastic recovery. Furthermore, the mean square displacement (MSD) data indicate that the flowing essence of the molten polymer is the directional migration and orientation arrangement of the macromolecule chains. The results also confirm that the “activation energy” is the principal obstacle for chains motion. After overcoming this obstacle, the migration rate gives a nonlinear increase trend with the rise of the shear stress.
Key words:  injection molding    morphology evolution    mechanical behavior    molecular dynamics simulation
出版日期:  2017-01-25      发布日期:  2018-05-02
ZTFLH:  TQ320  
基金资助: *国家自然科学基金(51365038;51565034);江西省科技支撑计划项目(20122BBE500044;20151BBE50033)
作者简介:  曹文华:男,1970年生,博士,副教授,主要从事注塑成型聚合物定向迁移与排布数值理论与算法研究 E-mail:caowenhua@ncu.edu.cn 刘东雷:通讯作者,男,1977年生,博士,副教授,主要从事聚合物成型加工形态结构与性能关系研究 E-mail:dlliu@ncu.edu.cn
引用本文:    
曹文华, 辛勇, 刘东雷. 注塑充模聚合物流动形态与力学行为分子机制研究*[J]. 《材料导报》期刊社, 2017, 31(2): 142-149.
CAO Wenhua, XIN Yong, LIU Donglei. Research on Flow Pattern and Molecular Mechanisms of Polymer Molten During Injection Filling Stage. Materials Reports, 2017, 31(2): 142-149.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.02.030  或          https://www.mater-rep.com/CN/Y2017/V31/I2/142
1 Koszkul J, Nabialek J. Viscosity models in simulation of the filling stage of the injection molding process [J]. J Mater Process Technol,2004,157-158:183.
2 Dus S J, Kokini J L. Prediction of the nonlinear viscoelastic properties of a hard wheat flour dough using the Bird-Carreau constitutive model [J]. J Rheol,1990,34(7):1069.
3 John A T. A withdrawal theory for ellis model fluids [J]. AIChE J,1966,12(5):1011.
4 Cross M M. Relation between viscoelasticity and shear-thinning behaviour in liquids [J]. Rheol Acta,1979,18(5):609.
5 Murilo F T, Renato A P S, Cassio M O, et al. Numerical solution of the Upper-Covered Maxwell model for three-dimensional free surface flows [J]. Commun Comput Phys,2009,6(2):367.
6 Hakim A. Existence results for the flow of viscoelastic fluids of White-Metzner type [J]. Extracta Mathematicae,1994,9(1):51.
7 Bischoff J E, Arruda E M, Grosh K. A rheological network model for the continuum anisotropic and viscoelastic behavior of soft tissue [J]. Biomech Model Mechanobiol,2004,3(1):56.
8 Aboubacaer M, Matallah H, Webster M F. Highly elastic solution for Oldroyd-B and Phan-Thien/Tanner fluids with a finite volume/element method: Planar contraction flows [J]. J Non-Newtonian Fluid Mech,2002,103:65.
9 Wiest J M, Bird R B. Molecular extension from the giesekus model [J]. J Non-Newton Fluid,1986,22(1):115.
10 Chang R Y, Chiou S Y. A unified K-BKZ model for residual stress analysis of injection molded three-dimensional thin shapes [J]. Polym Eng Sci,1995,35(22):1733.
11 Leonov A I. Nonequilibrium thermodynamics and rheology of viscoelastic polymer media [J]. Rheol Acta,1976,15:85.
12 Chang R T, Chiou S Y. Integral constitution model (K-BKZ) to describe viscoelastic flow in injection molding [J]. Int Polym Proc,1994,9(4):365.
13 Dietz W, White J L, Clark E S. Orientation development and relaxation in injection molding of amorphous [J]. Polym Eng Sci,1978,18(4):273.
14 Greener J, Pearson G H. Orientation residual stress and birefringence in injection molding [J]. J Rheol,1983,27(2):115.
15 Yu J S, Warger A H, Kalyon D M. Simulation of microstricture development in injection molding of engineering plastics [J]. J Appl Polym Sci,1992,44(3):477.
16 Isayev A I, Hiber C A. Toward a viscoelastic molding of the injection molding of polymer [J]. Rheol Acta,1980,19(2):168.
17 Kwon K, Isayev A I, Kim K H. Toward a viscoelastic moldeling of anisotropic shrinkage in injection molding of amorphous polymers [J]. J Appl Polym Sci,2005,98(5):2300.
18 Kim H, Park S J, Chung S T, et al. Numerical modeling of injection/compression molding for center gate disk, Part 1: Injection molding with viscoelastic compressible fluid model [J]. Polym Eng Sci,1999,39(10):1930.
19 Mavridis H, Hrymak A D, Vlachopoulos J. The effect of fountain flow on molecular orientation in injection molding [J]. J Rheol,1988,32(6):639.
20 Jiang Tao, Chen Xing, Li Dequn. Stress analysis if injection molded parts in post-filling stage [J]. Chin J Mech Eng,2000,13(1):41.
21 Baaijens F P T. Calculation of residual stress in injection molded products [J]. Rheol Acta,1991,30:284.
22 Douven L F A, Zoetelief W F, Ingen H A J. The compution of pro-perties of injection moulded products [J]. Prog Polym Sci,1995,20(1):403.
23 Park J M, Jeong S J, Park S J. Flake Orientation in injection mol-ding of pigmented thermoplastics [J]. J Manuf Sci Eng,2012,134(1):22.
24 Lee J, Yoon S, Kwon Y, et al. Practical comparison of differential viscoelastic constitutive equations on finite element analysis of planar 4∶1 contraction flow [J]. Rheol Acta,2004,44(2):188.
25 De Gennes. Coil-stretch transition of dilute flexible polymers under utralhigh velocity gradients [J]. J Chem Phys,1974,60(12):5030.
26 Pearson D, Herbolzheimer E, Grizzuti N, et al. Transient behavior of entangled polymers at high shear rates [J]. J Polym Sci Part B: Polym Phys,1991,29(13):1589.
27 Milner S T, Mcleish T C B. Reptation and contour-length fluctuations in melts of linear polymers [J]. Phys Rev Lett,1988,81(3):725.
28 Milner S T. Relating the shear-thinning curve to the molecular weight distribution in linear polymer melts [J]. J Rheol,1996,40(2):303.
29 Rubinstein M, Cobly R H. Self-consistent theory of polydisperse entangled polymers: Linear viscoelasticity of binary blends [J]. J Chem Phys,1988,89:5291.
30 Liu Donglei, Xin Yong, Cao Wenhua. Study on the polymer melt flow-induced orientation stress model in injection molding: with the isothermal compressible hypothesis [J]. J Mech Eng,2014,50(12):75(in Chinese).
刘东雷,辛勇,曹文华. 注射成型聚合物充模取向应力场模型化理论研究:考虑熔体的可压缩性[J]. 机械工程学报,2014,50(12):75.
[1] 敬彬, 胡文军, 陶俊林. Taylor撞击实验及其应用研究进展[J]. 材料导报, 2025, 39(2): 23100210-10.
[2] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[3] 柯松, 陈卓坤, 艾诚, 李尧, 虢婷, 孙志平. 非晶合金薄膜的复合强韧化研究进展[J]. 材料导报, 2024, 38(5): 22090022-9.
[4] 蒋平, 吕太勇, 吴丽华, José Pérez-Rigueiro, 胡梦蕾, 徐丽萍, 黄诗怡, 王安萍, 郭聪. 形变导致的蜘蛛大壶状腺丝力学行为的记忆与变异[J]. 材料导报, 2023, 37(23): 22050257-9.
[5] 何晓龙, 陈志谦, 李璐, 石一非. 基于聚合物-陶瓷复合材料的异形龙伯透镜天线的研究及制造[J]. 材料导报, 2023, 37(12): 21100228-6.
[6] 周雯怡, 易军艳, 陈卓, 冯德成. 泡沫沥青冷再生混合料界面黏附性提升原理与路用性能验证[J]. 材料导报, 2022, 36(16): 21110120-9.
[7] 焦卫卫, 候春莉, 邹敏, 张海鹏. 超润滑技术的研究现状与发展方向[J]. 材料导报, 2021, 35(Z1): 476-480.
[8] 王睿鑫, 唐宇, 李顺, 白书欣. 高熵合金动态载荷下变形机制的研究进展[J]. 材料导报, 2021, 35(17): 17001-17009.
[9] 帅亮, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生. 三维五向Cf/Al复合材料不同温度下的轴向弯曲变形力学行为[J]. 材料导报, 2020, 34(20): 20137-20142.
[10] 张美丽, 辛勇. 基于RHCM与CIM熔接痕形成的分子形态演化研究[J]. 材料导报, 2019, 33(18): 3125-3129.
[11] 喻选,辛勇. 聚合物注塑成型充模阶段流动取向分子机理研究[J]. 《材料导报》期刊社, 2018, 32(2): 327-332.
[12] 李颖, 梅园, 王颖, 孟凡彬, 周祚万. 面向金属/树脂复合材料的纳米注塑成型技术综述[J]. 《材料导报》期刊社, 2018, 32(13): 2295-2303.
[13] 刘建忠, 韩方玉, 周华新, 张丽辉, 刘加平. 超高性能混凝土拉伸力学行为的研究进展*[J]. CLDB, 2017, 31(23): 24-32.
[14] 曹文华, 辛勇, 刘东雷, 喻选. 等规聚丙烯注塑成型冷却固化分子机制研究*[J]. 《材料导报》期刊社, 2017, 31(20): 152-157.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed