Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (19): 1-12    https://doi.org/10.11896/j.issn.1005-023X.2017.019.001
  材料综述 |
磁流变弹性体力磁耦合本构关系的研究进展*
袁飞洋, 万强, 张灿阳, 李旭
中国工程物理研究院总体工程研究所,绵阳 621999
Advances in Magnetomechanical Coupling Constitutive Relations of Magnetorheological Elastomers
YUAN Feiyang, WAN Qiang, ZHANG Canyang, LI Xu
Institute of Systems Engineering, China Academy of Engineering Physics,Mianyang 621999
下载:  全 文 ( PDF ) ( 2075KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 磁流变弹性体是一类力学特性能够被外磁场可逆调控的新型智能复合材料。将微米尺寸的磁性颗粒填充到橡胶类聚合物基体中制备的磁弹体材料,其模量、阻尼和形变可以由外加磁场快速、连续、可逆改变。目前,基于动力学实验的宏观力学元素组合模型分析方法、微观偶极子力学分析和宏观连续介质力学描述成为分析磁感应多场耦合复合材料本构关系的主要方法。同时,数值模拟也成为研究磁流变材料的颗粒聚集结构演化和磁致伸缩效应的有效手段。本文侧重于介绍磁弹体智能材料力磁耦合的基本理论和研究方法,总结相关研究工作并探讨研究趋势,为磁敏类多功能材料的应用研究提供理论基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁飞洋
万强
张灿阳
李旭
关键词:  磁流变弹性体  智能材料  力磁耦合  偶极子模型  磁致伸缩  本构关系    
Abstract: Magnetorheological elastomers are a new class of smart materials whose mechanical properties may be controlled by external magnetic field in reversible processes. These materials typically consist of dispersive micron-sized magnetic particles and poly-mer matrix (like elastomers), and the modulus, damping, deformation can be rapidly, continuously and reversibly changed by appl-ying magnetic field. Currently, the macroscopic mechanical elements combination modeling based on dynamic experiment, microscopic dipole force analysis and macroscopic continuum mechanics description have become the main methods to study the constitutive relations with magnetic induction and multi-field coupling for these composite materials. Moreover, numerical simulation has also become the effective means to analyze particles aggregation structure revolution and magnetostrictive behavior of magnetorheological materials. This paper focuses on introducing the basic theories and research methodologies for the magnetomechanical coupling of magnetorheological elastomers, exploring the research trend, and aims at providing the theoretical fundamentals for the applicational research on magneto-sensitive materials.
Key words:  magnetorheological elastomer    smart material    magnetomechanical coupling    dipole interaction model    magnetostriction    constitutive relation
出版日期:  2017-10-10      发布日期:  2018-05-07
ZTFLH:  O37  
基金资助: *国家自然科学基金资助项目(11372295)
作者简介:  袁飞洋:男,1992年生,硕士研究生,主要从事磁弹体材料力学机理研究 万强:通讯作者,男,1979年生,研究员,从事多物理场耦合行为,材料、结构的瞬态动力学行为,薄膜、涂层力学等研究 E-mail:wanzhenyu@126.com
引用本文:    
袁飞洋, 万强, 张灿阳, 李旭. 磁流变弹性体力磁耦合本构关系的研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 1-12.
YUAN Feiyang, WAN Qiang, ZHANG Canyang, LI Xu. Advances in Magnetomechanical Coupling Constitutive Relations of Magnetorheological Elastomers. Materials Reports, 2017, 31(19): 1-12.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.019.001  或          https://www.mater-rep.com/CN/Y2017/V31/I19/1
1 Winslow W M. Method and means for translating electrical impulses into mechanical force: US 2417850[P]. 1947-03-25.
2 Rabinow J. The magnetic fluid clutch[J]. Trans Am Inst Electr Eng,1948, 67(2):1308.
3 Wang L Z,Li Y R.Research conditions and advances in magnetorheological materials[J].Aviation Eng Maint,1997(7):9 (in Chinese).
王立忠, 李云瑞. 磁流变体研究状况及进展[J]. 航空制造工程,1997(7):9.
4 Popplewell J, Rosensweig R E, Siller J K. Magnetorheology of ferrofluid composites[J]. J Magn Magn Mater, 1995,149(1):53.
5 Shiga T, Okada A, Kurauchi T. Magnetroviscoelastic behavior of composite gels[J]. J Appl Polym Sci,1995, 58(4):787.
6 Jolly M R, Carlson J D, Muñoz B C, et al. The magnetoviscoelastic response of elastomer composites consisting of ferrous particles embedded in a polymer matrix[J]. J Intell Mater Syst Struct,1996,7(6):613.
7 Jolly M R, Carlson J D, Munoz B C. A model of the behaviour of magnetorheological materials[J]. Smart Mater Struct,1996,5(5):607.
8 Lokander M, Stenberg B. Performance of isotropic magnetorheological rubber materials[J]. Polym Test, 2003,22(3):245.
9 Lokander M, Stenberg B. Improving the magnetorheological effect in isotropic magnetorheological rubber materials[J]. Polym Test,2003,22(6):677.
10 Chen L, Gong X L, Li W H. Microstructures and viscoelastic pro-perties of anisotropic magnetorheological elastomers[J]. Smart Mater Struct,2007,16(6):2645.
11 Zhou G Y. Shear properties of a magnetorheological elastomer[J]. Smart Mater Struct,2003,12(1):139.
12 Gong X L, Zhang X Z, Zhang P Q. Fabrication and characterization of isotropic magnetorheological elastomers[J]. Polym Test,2005,24(5):669.
13 Yang J, Du H, Li W, et al. Experimental study and modeling of a novel magnetorheological elastomer isolator[J]. Smart Mater Struct,2013,22(11):117001.
14 Kallio M. The elastic and damping properties of magnetorheological elastomers[M]. Finland:VTT Technical Research Centre,2005.
15 Bellan C, Bossis G. Field dependence of viscoelastic properties of MR elastomers[J]. Int J Mod Phys B,2002, 16(17-18):2447.
16 Zhou G Y. Complex shear modulus of a magnetorheological elastomer[J]. Smart Mater Struct,2004,13(5): 1203.
17 Chen L, Gong X, Jiang W, et al. Investigation on magnetorheological elastomers based on natural rubber[J]. J Mater Sci,2007,42(14):5483.
18 Stepanov G V, Abramchuk S S, Grishin D A, et al. Effect of a ho-mogeneous magnetic field on the viscoelastic behavior of magnetic elastomers[J]. Polymer,2007,48(2):488.
19 Li W H, Zhou Y, Tian T F. Viscoelastic properties of MR elastomers under harmonic loading[J]. Rheol Acta, 2010,49(7):733.
20 Chen L, Jerrams S. A rheological model of the dynamic behavior of magnetorheological elastomers[J]. J Appl Phys,2011,110(1):013513.
21 Shuib R K, Pickering K L. Investigation and modelling of damping mechanisms of magnetorheological elastomers[J]. J Appl Polym Sci,2016,DOI:10.10021app.43247.
22 Davis L C. Model of magnetorheological elastomers[J]. J Appl Phys,1999,85(6):3348.
23 Shen Y, Golnaraghi M F, Heppler G R. Experimental research and modeling of magnetorheological elastomers[J]. J Intell Mater Syst Struct,2004,15(1):27.
24 Zhu Y, Gong X, Dang H, et al. Numerical analysis on magnetic-induced shear modulus of magnetorheological elastomers based on multi-chain model[J]. Chin J Chem Phys,2006,19(2):126.
25 Zhang X, Peng S, Wen W, et al. Analysis and fabrication of patterned magnetorheological elastomers[J]. Smart Mater Struct,2008,17(4):045001.
26 Ivaneyko D, Toshchevikov V P, Saphiannikova M, et al. Magneto-sensitive elastomers in a homogeneous magnetic field: A regular rectangular lattice model[J]. Macromol Theory Simul,2011,20(6):411.
27 Ivaneyko D, Toshchevikov V, Borin D, et al. Mechanical properties of magneto-sensitive elastomers in a homogeneous magnetic field: Theory and experiment[J].Macromol Symp,2014,338(1):96.
28 Chen S W, Li R, Zhang Z, et al. Micromechanical analysis on tensile modulus of structured magneto-rheological elastomer[J]. Smart Mater Struct,2016,25(3):035001.
29 Fang S, Gong X L, Zhang X Z, et al. Mechanical properties test and analysis of magnetorheological elastomers[J].J Univ Sci Technol China,2004,34(4):456(in Chinese).
方生, 龚兴龙, 张先舟, 等. 磁流变弹性体力学性能的测试与分析[J]. 中国科学技术大学学报,2004, 34(4):456.
30 Biller A M, Stolbov O V, Raikher Y L. Modeling of particle interactions in magnetorheological elastomers[J]. J Appl Phys,2014,116(11):114904.
31 Brown W F. Magnetoelasticity interactions[M]. Berlin:Springer,1966.
32 Tiersten H F. Variational principle for saturated magnetoelastic insulators[J]. J Math Phys,1965,6(5): 779.
33 Truesdell C, Toupin R. The classical field theories[M]∥Principles of Classical Mechanics and Field Theory/Prinzipien der Klassischen Mechanik und Feldtheorie. Springer Berlin Heidelberg,1960:226.
34 DeSimone A, Podio-Guidugli P. On the continuum theory of defor-mable ferromagnetic solids[J]. Arch Ration Mech Anal,1996,136(3):201.
35 Mooney M. A theory of large elastic deformation[J]. J Appl Phys,1940,11(9):582.
36 Rivlin R S. Large elastic deformations of isotropic materials. Ⅳ. Further developments of the general theory[J]. Phil Trans R Soc Lond A,1948,241(835):379.
37 Treloar L R G. The physics of rubber elasticity[M]. UK:Oxford University Press,1975.
38 Borcea L, Bruno O. On the magneto-elastic properties of elastomer-ferromagnet composites[J]. J Mech Phys Solid,2001,49(12):2877.
39 Brigadnov I A, Dorfmann A. Mathematical modeling of magneto-sensitive elastomers[J]. Int J Solid Struct, 2003,40(18):4659.
40 Dorfmann A, Ogden R W. Magnetoelastic modelling of elastomers[J]. Eur J Mech A:Solid,2003,22(4):497.
41 Kankanala S V, Triantafyllidis N. On finitely strained magnetorheological elastomers[J]. J Mech Phys Solid, 2004,52(12):2869.
42 Yin H M, Sun L Z, Chen J S. Magneto-elastic modeling of compo-sites containing chain-structured magnetostrictive particles[J]. J Mech Phys Solid,2006,54(5):975.
43 Bustamante R. Transversely isotropic nonlinear magneto-active elastomers[J]. Acta Mech,2010,210(3-4):183.
44 Danas K, Kankanala S V, Triantafyllidis N. Experiments and mo-deling of iron-particle-filled magnetorheological elastomers[J]. J Mech Phys Solid,2012,60(1):120.
45 Saxena P, Hossain M, Steinmann P. Nonlinear magneto-viscoelasticity of transversally isotrpic magneto-active polymers[J]. Proc Math Phys Eng Sci,2014,470:20140082.
46 Saxena P, Hossain M, Steinmann P. A theory of finite deformation magneto-viscoelasticity[J]. Int J Solid Struct,2013,50(24):3886.
47 Itskov M, Khiêm V N. A polyconvex anisotropic free energy function for electro-and magneto-rheological elastomers[J]. Math Mech Solid,2014,21(9):1126.
48 Han Y, Zhang Z, Faidley L A E, et al. Microstructure-based mode-ling of magneto-rheological elastomers[C]∥SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring. International Society for Optics and Photonics,2012.
49 Han Y, Hong W, Faidley L A E. Field-stiffening effect of magneto-rheological elastomers[J]. Int J Solid Struct,2013,50(14):2281.
50 Rudykh S, Bertoldi K. Stability of anisotropic magnetorheological elastomers in finite deformations: A micromechanical approach[J]. J Mech Phys Solid,2013,61(4):949.
51 Eem S H, Jung H J, Koo J H. Modeling of magneto-rheological elastomers for harmonic shear deformation[J]. IEEE Trans Magn,2012,48(11):3080.
52 Yang J, Gong X, Deng H, et al. Investigation on the mechanism of damping behavior of magnetorheological elastomers[J]. Smart Mater Struct,2012,21(12):125015.
53 Schoeck G. Internal friction due to precipitation[J]. Phys Status Solidi (B),1969,32(2):651.
54 Lavernia E J, Perez R J, Zhang J. Damping behavior of disconti-nuously reinforced ai alloy metal-matrix composites[J]. Metall Mater Trans A,1995,26(11):2803.
55 Weiss P. L′hypothèse du champ moléculaire et la propriété ferromagnétique[J]. J Phys Theor Appl,1907,6(1): 661.
56 Zhang X, Li W, Gong X L. An effective permeability model to predict field-dependent modulus of magnetorheological elastomers[J]. Commun Nonlinear Sci Numer Simul,2008,13(9):1910.
57 Ly H V, Reitich F, et al. Simulations of particle dyna-mics in magnetorheological fluids[J]. J Comput Phys,1999,155(1):160.
58 Haghgooie R, Doyle P S. Structural analysis of a dipole system in two-dimensional channels[J]. Phys Rev E,2004,70(6):061408.
59 Climent E, Maxey M R, Karniadakis G E. Dynamics of self-assembled chaining in magnetorheological fluids[J]. Langmuir,2004,20(2):507.
60 Liu T, Gong X, Xu Y, et al. Simulation of magneto-induced rearrangeable microstructures of magnetorheological plastomers[J]. Soft Matter,2013,9(42):10069.
61 Stolbov O V, Raikher Y L, Balasoiu M. Modelling of magnetodipolar striction in soft magnetic elastomers[J]. Soft Matter,2011,7(18):8484.
62 Metsch P, Kalina K A, Spieler C, et al. A numerical study on magnetostrictive phenomena in magnetorheological elastomers[J]. Comput Mater Sci,2016,124:364.
63 Melle S, Calderón O G, Rubio M A, et al. Rotational dynamics in dipolar colloidal suspensions: Video microscopy experiments and si-mulations results[J]. J Non-Newton Fluid Mech,2002,102(2):135.
64 Klingenberg D J, Olk C H, Golden M A, et al. Effects of nonmagnetic interparticle forces on magnetorheological fluids[J]. J Phys: Condensed Matter,2010,22(32):324101.
65 Li C H, Zhang Y L.Particles sedimentation in non-Newtonian fluid[J]. J Daqing Pet Inst,1995,19(1):6(in Chinese).
李彩虹, 张玉亮. 颗粒在非牛顿液体中的沉降[J]. 大庆石油学院学报,1995,19(1):6.
66 Guan X, Dong X, Ou J. Magnetostrictive effect of magnetorheological elastomer[J]. J Magn Magn Mater,2008,320(3):158.
67 Stepanov G V, Borin D Y, Raikher Y L, et al. Motion of ferroparticles inside the polymeric matrix in magnetoactive elastomers[J]. J Phys: Condensed Matter,2008,20(20):204121.
68 Zhou G Y, Jiang Z Y. Deformation in magnetorheological elastomer and elastomer-ferromagnet composite driven by a magnetic field[J]. Smart Mater Struct,2004,13(2):309.
69 Galipeau E, Rudykh S, Castañeda P P. Magnetoactive elastomers with periodic and random microstructures[J]. Int J Solid Struct,2014,51(18):3012.
70 Danas K, Kankanala S V, Triantafyllidis N. Experiments and mo-deling of iron-particle-filled magnetorheological elastomers[J]. J Mech Phys Solid,2012,60(1):120.
71 Ginder J M, Clark S M, Schlotter W F, et al. Magnetostrictive phenomena in magnetorheological elastomers[J]. Int J Mod Phys B,2002,16(17n18):2412.
72 Coquelle E, Bossis G. Magnetostriction and piezoresistivity in elastomers filled with magnetic particles[J]. J Adv Sci,2005,17(1-2):132.
73 Zubarev A. Magnetodeformation of ferrogels and ferroelastomers. Effect of microstructure of the particles’ spatial disposition[J]. Physica A: Stat Mech Appl,2013,392(20):4824.
74 Ivaneyko D, Toshchevikov V, Borin D, et al. Mechanical properties of magneto-sensitive elastomers in a homogeneous magnetic field: Theory and experiment[J].Macromol Symp,2014,338(1):96.
75 Pössinger T, Bolzmacher C, Bodelot L, et al. Influence of interfacial adhesion on the mechanical response of magneto-rheological elastomers at high strain[J]. Microsyst Technol,2014,20(4-5):803.
76 Bica I. Influence of the magnetic field on the electric conductivity of magnetorheological elastomers[J]. J Ind Eng Chem,2010,16(3):359.
77 Ju B, Tang R, Zhang D, et al. Temperature-dependent dynamic mechanical properties of magnetorheological elastomers under magnetic field[J]. J Magn Magn Mater,2015,374:283.
[1] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[2] 杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
[3] 陈宇良, 王双翼, 李洪, 李培泽. 复杂应力状态下玻璃纤维再生混凝土损伤演变及应力-应变本构关系研究[J]. 材料导报, 2024, 38(24): 23080024-9.
[4] 冯虎, 闵智爽, 郭奥飞, 朱必洋, 陈兵, 黄昊. 超高韧性磷酸镁水泥基复合材料压缩力学性能研究[J]. 材料导报, 2024, 38(17): 23090058-12.
[5] 张洪智, 金祖权, 姜能栋, 葛智, Erik Schlangen, 凌一峰, Branko Šavija, 王铮. 基于分段步进式弹塑性格构模型的混凝土破坏过程细观模拟[J]. 材料导报, 2023, 37(8): 21100198-7.
[6] 李良, 赵修贤, 王彬彬, 杨帅军, 聂永, 蒋绪川. 热致变色过渡金属配合物的变色机理及应用[J]. 材料导报, 2023, 37(4): 21010049-11.
[7] 赵明媚, 张进秋, 彭志召, 张建, 李欣. 剪切增稠液体理论基础和工程应用进展概述[J]. 材料导报, 2022, 36(9): 20070135-8.
[8] 张光睿, 姚特, 龚沛, 乔禹, 王婷婷, 梁雨萍, 郝宏波. (Fe81.5Co1.5Ga17)100-xTbx合金结构及其磁性能[J]. 材料导报, 2022, 36(5): 20120138-5.
[9] 段品佳, 毕晓星, 李宇航, 刘娟红, 周大卫, 程立年, 娄百川. 混凝土超低温力学特性及本构关系研究[J]. 材料导报, 2022, 36(18): 21010199-5.
[10] 张苗, 田青, 屈孟娇, 祁帅, 姚田帅, 许鸽龙, 邓德华. 水泥乳化沥青砂浆应力-应变本构关系的研究[J]. 材料导报, 2022, 36(15): 21010104-5.
[11] 潘一, 徐明磊, 郭奇, 廖广志, 杨双春, Kantoma Daniel Bala. 钻井液智能堵漏材料研究进展[J]. 材料导报, 2021, 35(9): 9223-9230.
[12] 杨广鑫, 潘家保, 周陆俊, 高洪, 王晓雷. 磁流变脂材料及其应用研究进展[J]. 材料导报, 2021, 35(23): 23183-23191.
[13] 丁鑫, 肖晓春, 吴迪, 吕祥锋, 潘一山, 白润欣. 考虑初始孔隙性的含瓦斯煤岩力学本构关系与损伤演化研究[J]. 材料导报, 2021, 35(18): 18096-18103.
[14] 门阔, 赵鸿滨, 魏峰, 魏千惠. 磁性传感材料与器件研究进展[J]. 材料导报, 2021, 35(15): 15056-15064.
[15] 胥晓强, 胥永刚. V元素对Fe-16Cr-2.5Mo合金磁机械阻尼的影响[J]. 材料导报, 2021, 35(14): 14115-14119.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed