Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (11): 138-143    https://doi.org/10.11896/j.issn.1005-023X.2017.011.019
  金属腐蚀与防护 |
铜锡青铜合金腐蚀过程中的电化学与微结构特征研究*
李冰洁1, 江旭东2, 潘春旭1
1 武汉大学物理科学与技术学院,武汉 430072;
2 湖北省博物馆,武汉 430077
Electrochemical Properties and Microstructure of Cu-Sn Bronze Wares During Corrosion
LI Bingjie1, JIANG Xudong2, PAN Chunxu1
1 School of Physics and Technology, Wuhan University, Wuhan 430072;
2 Hubei Provincial Museum, Wuhan 430077
下载:  全 文 ( PDF ) ( 1930KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用电化学分析技术,如开路电位(OCP)、极化曲线(Tafel曲线)、电化学阻抗谱(EIS)等,并结合显微组织观察研究不同锡(Sn)含量的青铜合金在NaCl、Na2SO4溶液中的腐蚀过程。结果显示高Sn锡青铜具有更好的耐腐蚀性;对锡青铜合金中显微组织的观察发现α相的点蚀坑明显多于δ相,表明在电解质溶液中α相更易发生腐蚀。本研究为古代青铜器的锈蚀防护提供了基础数据,具有较重要的指导价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李冰洁
江旭东
潘春旭
关键词:  青铜器  腐蚀  电化学测量  组成结构  电化学阻抗谱法    
Abstract: The corrosion process of different Cu-Sn bronzes in NaCl and Na2SO4 solutions were examined by electrochemical analysis technologies, including open circuit potential(OCP), polarization curves (Tafel curves), electrochemical impedance spectroscopy(EIS), etc. The microstructure were observed by a digital microscope for evaluating the preferential corroded phase (α phase or δ phase). Electrochemical experimental results revealed that the corrosion resistance of the bronze with high Sn content was superior to the bronze with low Sn content. Through microstructural observations, it was found that the corrosion pits on the α phase were significantly more than that on the δ phase, indicating that the α phase was the preferential corroded phase. This study provides the basic data for the ancient bronze wares protection.
Key words:  Cu-Sn bronze    corrosion    electrochemical measurement    composition and structure    electrochemical impedance spectroscopy
出版日期:  2017-06-10      发布日期:  2018-05-04
ZTFLH:  TQ150  
基金资助: 黄冈市黄州区博物馆馆藏青铜文物保护修复项目
通讯作者:  潘春旭:通讯作者,男,1962年生,博士,教授,博士研究生导师,研究方向为纳米材料、科技考古 Tel:027-68752481-8168 E-mail:cxpan@whu.edu.cn   
作者简介:  李冰洁:女,1993年生,硕士研究生,研究方向为科技考古 E-mail:15827426251@163.com
引用本文:    
李冰洁, 江旭东, 潘春旭. 铜锡青铜合金腐蚀过程中的电化学与微结构特征研究*[J]. 《材料导报》期刊社, 2017, 31(11): 138-143.
LI Bingjie, JIANG Xudong, PAN Chunxu. Electrochemical Properties and Microstructure of Cu-Sn Bronze Wares During Corrosion. Materials Reports, 2017, 31(11): 138-143.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.011.019  或          https://www.mater-rep.com/CN/Y2017/V31/I11/138
1 Wang C S, Yuan M, Xiong Y H. Bronze composition and the formation of powdery corrosion [J]. J China University of Science and Technology,1995,25(4):448(in Chinese).
王昌燧, 袁玫, 熊永红. 青铜合金成分与粉状锈的生成[J]. 中国科学技术大学学报, 1995,25(4):448.
2 Wang N, He J Q, Sun S Y, et al. Bronze samples in various typical electrolytes [J]. Sci Conservation Archaeology,2007,19(4):45(in Chinese).
王宁, 何积铨, 孙淑云,等. 模拟青铜器样品在典型电解质溶液中的电化学行为研究[J]. 文物保护与考古科学,2007,19(4):45.
3 Luo Wugan. Primary study of bronze artifacts in ancient Jun State [D]. Hefei: University of Science and Technology of China,2008(in Chinese).
罗武干. 古麇地出土青铜器初步研究[D].合肥:中国科学技术大学,2008.
4 Wu Y S, Fan C Z, Ling M R. A calculation of quantum mechanics for the preferential corrosion on the crystal edge of bronze alloy [J]. Sci Conservation Archaeology,1994,6(1):1(in Chinese).
吴佑实, 范崇正, 铃木稔. 青铜合金表面晶体棱角处优先生锈的量子力学证明[J]. 文物保护与考古科学,1994,6(1):1.
5 Liu Y, Yuan S X, Zhang X M. Research on the corrosion of bronze wares excavated from Tianma-Qucun site of Jin state in Zhou Dynasty [J]. Sci Conservation Archaeology,2000,12(2):9(in Chinese).
刘煜, 原思训, 张晓梅. 天马-曲村周代晋国墓地出土青铜器锈蚀研究[J]. 文物保护与考古科学,2000,12(2):9.
6 Zhang X M, Yuan S X, Liu Y, et al. Research on the corrosion of bronzes from Zhouyuan Site and Yu State cemeteries [J]. Sci Conservation Archaeology,1999,11(2):7(in Chinese).
张晓梅, 原思训, 刘煜, 等. 周原遗址及(弓鱼)国墓地出土青铜器锈蚀研究[J]. 文物保护与考古科学,1999,11(2):7.
7 Zhu F H, Zhou H. A study of the corrosion on bronze [J]. Electrochemistry,1999,5(3):314(in Chinese).
祝鸿范, 周浩. 青铜器文物腐蚀受损原因的研究[J]. 电化学,1999,5(3):314.
8 Souissi N, Bousselmi L, et al. Electrochemical behaviour of an archaeological bronze alloy in various aqueous media: New method for understanding artifacts preservation [J]. Mater Corros,2003,54:318.
9 Hassairi H, Bousselmi L, Triki E. Bronze degradation processes in simulating archaeological soil media [J]. J Solid State Electrochem,2010,14:393.
10 Sidot E, Souissi N, et al. Study of the corrosion behaviour of Cu-10Sn bronze in aerated Na2SO4 aqueous solution [J]. Corros Sci,2006:48(8):2241.
11 Souissi N, Bousselmi L, et al. Voltammetric behaviour of an archaeo-logical bronze alloy in aqueous chloride media [J]. Mater Corros,2004,55(4):284.
12 Hassairi H, Bousselmi L, et al. Assessment of the interphase beha-viour of two bronze alloys in archaeological soil [J]. Mater Corros,2007,58(2):121.
13 Souissi N, Triki E. Early stages of copper corrosion behaviour in a Tunisian soil [J]. Mater Corros,2009, 60(4):1.
14 Liao Xiaoning. Corrosion behavior of copper and bronze alloys under static and dynamic thin electrolyte layers [D]. Hangzhou: Zhejiang University,2012(in Chinese).
廖晓宁. 铜及青铜合金在静态和动态薄液膜下的腐蚀行为研究[D].杭州:浙江大学,2012.
15 Qian Zhaohong. Electrochemical and in-situ SECM study on the corrosion characteristics of aluminum in neutral media [D]. Jinan: Shandong University,2012(in Chinese).
钱兆红. 铝在中性介质中腐蚀特性的电化学和原位SECM研究[D].济南:山东大学,2012.
16 Han R F, Sun S Y, Li X H, et al. Microstructure of ancient Chinese copper artefacts [J]. J University of Science and Technology Beijing,2002,24(2):219(in Chinese).
韩汝玢, 孙淑云, 李秀辉, 等. 中国古代铜器的显微组织[J]. 北京科技大学学报,2002,24(2):219.
[1] 张泽疆, 李新梅, 朱春金, 李航, 杨定力. 纳米TiB2对CoCrFeNiSi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2025, 39(3): 23090210-9.
[2] 赵兴源, 刘昕, 刘秋元, 邱肖盼, 张子月, 江社明, 张启富. 连续物理气相沉积带钢涂镀研究进展与应用现状[J]. 材料导报, 2025, 39(2): 24030032-9.
[3] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[4] 井文昌, 张志鸿, 刘香琛, 吴云翼, 李宝让. 新型液态金属电池材料体系及其相关技术的研究与进展[J]. 材料导报, 2025, 39(1): 23090098-17.
[5] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[6] 赵永福, 唐敏, 姜峨, 银朝晖, 陈子瑞, 张根, 吴宗佩, 李杨. 氨型碱性水化学对690TT腐蚀特性的影响[J]. 材料导报, 2024, 38(7): 23030048-6.
[7] 王越, 周本基, 徐能能, 乔锦丽. 可逆锌-空气电池锌阳极研究进展及挑战[J]. 材料导报, 2024, 38(6): 23040162-10.
[8] 张学鹏, 张戎令, 杨斌, 肖鹏震, 王小平, 龙朝飞. 冻融-硫酸盐腐蚀耦合作用下早龄期混凝土强度演变及预测模型研究[J]. 材料导报, 2024, 38(5): 22080059-9.
[9] 桂晓露, 程瑄, 李芃飞, 高古辉, 孙丽娅, 易汉平. 石墨烯的分散方法及在水性环氧富锌涂料中的应用进展[J]. 材料导报, 2024, 38(3): 22060047-8.
[10] 朱凯涛, 董多, 杨晓红, 朱冬冬, 王晓红, 马腾飞. GH4169/BNi-7钎焊接头的显微组织、力学性能和腐蚀行为[J]. 材料导报, 2024, 38(24): 23100078-8.
[11] 王帆,赵国仙, 方堃, 裴文霞, 丁浪勇, 刘冉冉. 3Cr钢在含O2的CO2环境中的腐蚀行为研究[J]. 材料导报, 2024, 38(23): 23070093-8.
[12] 裴文霞, 赵国仙, 丁浪勇, 方堃, 王帆, 刘冉冉. 温度对管线钢在SRB/CO2环境中的腐蚀影响[J]. 材料导报, 2024, 38(23): 23070058-8.
[13] 张若楠, 韦朋余, 王珂, 曾庆波, 王连, 宋培龙. 海水环境下船用高强钢腐蚀疲劳损伤行为研究[J]. 材料导报, 2024, 38(23): 23090176-6.
[14] 吴伟同, 徐迪, 程学群, 张达威, 李晓刚. 国家材料腐蚀与防护科学数据中心建设历程与发展现状[J]. 材料导报, 2024, 38(23): 23090008-8.
[15] 钟丽萍, 路迢迢, 孙林超, 张梅, 王亮亮, 王永建. 镁合金多向锻造技术的研究现状与展望[J]. 材料导报, 2024, 38(23): 23070200-11.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed