Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (10): 32-36    https://doi.org/10.11896/j.issn.1005-023X.2017.010.007
  材料研究 |
不同水醇比条件下原位聚合的聚吡咯/石墨烯复合材料的电容性能*
张硕,于立岩
青岛科技大学材料科学与工程学院, 青岛 266042
Capacitive Properties of In-situ Polymerized Polypyrrole/Graphene Composites Differed in Water-alcohol Ratios
ZHANG Shuo, YU Liyan
College of Materials Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042
下载:  全 文 ( PDF ) ( 1217KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在不同水醇比的溶剂环境下,利用原位聚合法制得聚吡咯/氧化石墨烯复合物,再经还原得到聚吡咯/还原氧化石墨烯复合材料。通过红外光谱、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等测试方法对复合材料的结构和形貌进行表征,利用电化学工作站对复合物的电化学性能进行了测试。结果表明,在不同水醇比的溶剂条件下所制备的还原氧化石墨烯与聚吡咯复合材料都具有优异的电容性能和良好的稳定性。当水醇比为9∶1(体积比,下同)时,所制备的材料具有最稳定的电容性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张硕
于立岩
关键词:  氧化石墨烯  聚吡咯  水醇比  原位聚合    
Abstract: A series of composites of polypyrrole and graphene oxide (GO) were synthesized by in-situ-polymerization with different ratios of water to alcohol in the solvents for the blending of GO and Py monomer. The structures and morphologies of the resultant composite materials were characterized by infrared spectroscopy, SEM, and TEM, while electrochemical performances were tested by means of cyclic voltammetry (CV) and galvanostatic charge-discharge test. The results showed that all the composite materials have outstanding capacitive performances and good stabilities, and the composite synthesized under 9∶1 water-alcohol ratio (volume ratio) exhibits the most stable capacitive performance.
Key words:  Key words  graphene oxide    polypyrrole    water-alcohol ratio    in-situ polymerization
发布日期:  2018-05-08
ZTFLH:  TB383  
基金资助: *国家自然科学基金(51373086;21606140)
通讯作者:  于立岩,男,博士,教授,研究方向为新型碳材料Tel:0532-84022869E-mail:liyanyu@qust.edu.cn   
作者简介:  张硕:男,1993年生,硕士研究生,从事新型碳材料的合成研究E-mail:18354235636@163.com
引用本文:    
张硕,于立岩. 不同水醇比条件下原位聚合的聚吡咯/石墨烯复合材料的电容性能*[J]. 材料导报编辑部, 2017, 31(10): 32-36.
ZHANG Shuo, YU Liyan. Capacitive Properties of In-situ Polymerized Polypyrrole/Graphene Composites Differed in Water-alcohol Ratios. Materials Reports, 2017, 31(10): 32-36.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.010.007  或          https://www.mater-rep.com/CN/Y2017/V31/I10/32
1 Wu F, Xu B. Progress on the application of carbon nanotubes in supercapacitors [J]. New Carbon Mater,2006,21(2):176.
2 Yue J, Hu C G, Cheng H H, et al. Spontaneous, straightforward fabrication of partially reduced graphene oxide-polypyrrole composite films for versatile actuators [J]. ACS Nano,2016,10(4):4735.
3 Shukla A K, Arico A S, Antonucci V. An appraisal of electric automobile power sources [J]. Renew Sust Energ Rev,2001,5(2):137.
4 Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene [J]. Solid State Commun,2008,146(9-10):351.
5 Stoller M D, Park S, Zhu Y, et al. Graphene-based ultracapacitors [J]. Nano Lett,2008,8(10):3498.
6 Xu C, Chen S, Wang X. Progress in the chemistry of materials based oil graphene [J]. Chinese J Appl Chem,2011,28(1):1.
7 Kim J H, Lee Y S, Sharma A K, et al. Polypyrrole/carbon compo-site electrode for high-power electrochemical capacitors [J]. Electrochim Acta,2006,52(4):1727.
8 Wang H L, Hao Q L, Yang X J, et al. Graphene oxide doped polyaniline of supercapacitors [J]. Electrochem Commun,2009,11(6):1158.
9 Fu L, Liu H B, Wu X M, et al. Effect of additives on structures and properties of polypyrrole/graphite oxide nanocomposites [J]. Polym Mater Sci Eng,2006,22(3):145.
10 Han Y Q, Hao L, Zhang X G. Preparation and electrochemical performance of graphite oxide/polypyrorle composites [J]. Synth Met,2010,160(21-22):2336.
11 Ouyang J Y, Li Y F. Effect of electrolyte solvent the conductivity and structure of as-prepared polypyrrole films [J]. Polymer,1997,38(8):1971.
12 Hummers W S, Offeman R E. Preparation of graphitic oxide [J]. J Am Chem Soc,1958,80(6):1339.
13 Zhang J T, Zhao X S. Conducting polymers directly coated on reduced graphene oxide sheets as high-performance supercapacitor electrodes [J]. Phys Chem C,2012,116(9):5420.
14 Liu W T, Fang Y Y, Xu P, et al. Two-step electrochemical synthesis of polypyrrole/reduced graphene oxide composites as efficient Pt-free counter electrode for plastic dye-sensitized solar cells [J]. ACS Appl Mater Interfaces,2014,6(18):16249.
15 Cui J, Zhai J, Hu S C, et al. Effect of volume ratio of ethyl alcohol to water on the morphology and conductive property of polypyrrole[J]. New Chem Mater,2015,43(9):169(in Chinese).
崔静, 翟晶, 胡书春,等. 乙醇和水的体积比对PPy的微观形貌及导电性的影响研究[J]. 化工新型材料,2015,43(9):169.
16 Fan Y F, Liu Y H, Cai Q, et al. Synthesis of CTAB-intercalated graphene/polypyrrole nanocomposistes via in situ oxidative polymerization [J]. Synth Met,2012,162(21-22):1815.
[1] 郑栋浩, 贺格平, 弥元梅, 皇甫慧君, 张慧敏, 李彦霞, 袁蝴蝶. 氧化石墨烯添加量对MoSe2复合rGO电极材料电化学性能的影响[J]. 材料导报, 2024, 38(16): 23060178-8.
[2] 朱玉方, 张慧丽, 梁丰国, 杨新伟, 陈长科, 买买提江·依米提, 马俊红. 还原氧化石墨烯的可控制备及表征[J]. 材料导报, 2024, 38(12): 22110271-6.
[3] 任鑫, 王浩鑫, 孙涛, 王港, 孟超, 邱星武. 单脉冲电沉积Ni-纳米TiC-氧化石墨烯复合镀层结构及磨损性能[J]. 材料导报, 2024, 38(11): 22060057-7.
[4] 郝璐, 于德梅. 聚吡咯纳米复合材料的研究进展[J]. 材料导报, 2023, 37(9): 21110151-10.
[5] 刘斌, 王文庆, 于知非, 汤晶, 李正心, 刘天中, 苏革. 氧化石墨烯/氧化铟/两性离子丙烯酸氟化聚合物复合膜的制备及抗牛血清白蛋白性能[J]. 材料导报, 2023, 37(4): 21010165-8.
[6] 王姗迟, 潘嵩玥, 孙俊玲, 赵燕. 热阻型氧化石墨烯基火灾早期预警传感器的研究进展[J]. 材料导报, 2023, 37(24): 22010297-9.
[7] 刘新宇, 刘惠, 王新杰, 朱平华, 陈春红, 周心磊. 氧化石墨烯改性地聚物再生混凝土的抗硫酸溶蚀性能研究[J]. 材料导报, 2023, 37(21): 22010212-6.
[8] 颜冬仙, 樊新. rGO/NiCo复合材料制备及电化学性能研究[J]. 材料导报, 2023, 37(18): 22030311-6.
[9] 梁宁, 陆小凤, 周街荣, 黄丽葵, 王军正. 高内相乳液原位聚合制备多孔复合材料吸附铅离子[J]. 材料导报, 2023, 37(15): 22040290-7.
[10] 吴晨曦, 郑文跃, 王现中, 熊道英, 金少波. 石墨烯增强防腐涂层的研究进展[J]. 材料导报, 2023, 37(13): 21080272-9.
[11] 樊晋源, 李茂森, 段平, 陈伟, 张祖华. 氧化石墨烯增强地聚物抗硫酸盐侵蚀性能研究[J]. 材料导报, 2023, 37(13): 22030196-5.
[12] 李威霖, 陈玲, 王佳, 袁凯, 焦剑. Fe3O4-GO复合纳米纸的制备及吸波性能研究[J]. 材料导报, 2023, 37(1): 21080126-7.
[13] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[14] 姚庆达, 梁永贤, 王小卓, 温会涛, 周华龙, 但卫华. GO/CS的结构、性能及其在水处理中的应用研究进展[J]. 材料导报, 2022, 36(4): 20110041-13.
[15] 董健苗, 邹明璇, 周铭, 余浪, 曹嘉威, 庄佳桥, 王留阳, 王慧敏. 石墨烯及氧化石墨烯对水泥基材料水化过程及强度的影响[J]. 材料导报, 2022, 36(24): 21060032-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed