Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (10): 16-18    https://doi.org/10.11896/j.issn.1005-023X.2017.010.004
  材料研究 |
ZnO四足和多足纳米结构的制备和光致发光性能研究*
彭智伟,刘志宇,傅刚
广州大学物理与电子工程学院, 广州 510006
Fabrication and Photoluminescence Property of ZnO Tetrapod and Multipod Nanostructures
PENG Zhiwei, LIU Zhiyu, FU Gang
School of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006
下载:  全 文 ( PDF ) ( 1087KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用简单的热蒸发法,在没有使用载气和催化剂的情况下成功制备出ZnO四足和多足纳米结构。采用场发射扫描电镜、X射线衍射、高分辨透射电子显微镜和荧光分光光度计研究了ZnO纳米结构的形貌、结构和光致发光性能。结果表明所合成的ZnO是由具有六方纤锌矿结构的四足和多足纳米结构组成,足部呈棒状并沿[0001]方向生长。提出了四足和多足ZnO纳米结构的生长机制。在室温下的光致发光光谱中,494 nm处出现一个较强的绿色发射峰,391 nm处出现一个较弱的紫外发射峰。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭智伟
刘志宇
傅刚
关键词:  氧化锌  热蒸发  纳米结构  光致发光    
Abstract: ZnO tetrapod and multipod nanostructures were successfully synthesized without the presence of carrier gas and ca-talyst through a simple thermal evaporation method. The morphology, structure and photoluminescence properties of ZnO nanostructures were characterized by field-emission scanning electron microscopy, X-ray diffraction, transmission electron microscopy and fluorescence spectroscopy. The results demonstrated that the as-synthesized ZnO consisted of tetrapod and multipod nanostructures with a hexagonal wurtzite structure. The legs of the nanostructures had rod-like shape and grew preferably in the [0001] direction. The growth mechanisms of the ZnO tetrapod and multipod nanostructures were proposed. Room temperature photoluminescence (PL) spectra showed that the as-synthesized ZnO nanostructures had a strong green emission centered at 494 nm and a weak ultraviolet emission at 391 nm.
Key words:  zinc oxide    thermal evaporation    nanostructure    photoluminescence
发布日期:  2018-05-08
ZTFLH:  TB383  
基金资助: *广州市属高校科研计划项目(2012A090)
作者简介:  彭智伟:男,1981年生,博士,讲师,主要研究方向为纳米发光材料的制备和性能研究E-mail:zhiwei_peng@aliyun.com
引用本文:    
彭智伟,刘志宇,傅刚. ZnO四足和多足纳米结构的制备和光致发光性能研究*[J]. 材料导报编辑部, 2017, 31(10): 16-18.
PENG Zhiwei, LIU Zhiyu, FU Gang. Fabrication and Photoluminescence Property of ZnO Tetrapod and Multipod Nanostructures. Materials Reports, 2017, 31(10): 16-18.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.010.004  或          https://www.mater-rep.com/CN/Y2017/V31/I10/16
1 Li J, Lin Y, Lu J F, et al. Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance[J]. ACS Nano,2015,9(7):6794.
2 Hao Y H, Zhao J W, Qin L R, et al. Facile fabrication of UV photodetector based on spatial network of tetrapod ZnO nanostructures[J]. Micro Nano Lett,2012,7(3):200.
3 Tang X B, Li G M, Zhou S M. Ultraviolet electroluminescence of light-emitting diodes based on single n-ZnO/p-AlGaN heterojunction nanowires[J]. Nano Lett,2013,13(11):5046.
4 Zulkifli Z, et al. Highly transparent and conducting C∶ZnO thin film for field emission displays[J]. RSC Adv,2014,4(110):64763.
5 Rodrigues J, Cerqueira A F R, Sousa M G, et al. Exploring the potential of laser assisted flow deposition grown ZnO for photovoltaic applications[J]. Mater Chem Phys,2016,177:322.
6 Tang X S, Choo E S G, Li L, et al. Synthesis of ZnO nanoparticles with tunable emission colors and their cell labeling applications[J]. Chem Mater,2010,22(11):3383.
7 Xu S, Wang Z L. One-dimensional ZnO nanostructures: Solution growth and functional properties[J]. Nano Res,2011,4(11):1013.
8 Biswas I, Majumder M, Piyali Roy (Kundu), et al. Nanostructured ZnO thin film with improved optical and electrochemical properties prepared by hydrothermal electrochemical deposition technique[J]. Micro Nano Lett,2016,11(7):351.
9 Guo H L,Zhu Q,Wu X L,et al. Oxygen deficient ZnO1-x nanoshee-ts with high visible light photocatalytic activity[J]. Nanoscale,2015,7(16):7216.
10 Mousavi S H, et al. Growth and characterization of wurtzite ZnO nanocombs and nanosaws[J]. Mater Lett,2012,70:86.
11 Hussain S, Liu T, Kashif M, et al. Surfactant dependent growth of twinned ZnO nanodisks[J]. Mater Lett,2014,118(3):165.
12 Rakshit T, Manna I, Ray S K. Shape controlled Sn doped ZnO nanostructures for tunable optical emission and transport properties[J]. AIP Adv,2013,3(11):112112.
13 Peng Z W, Dai G Z, Zhou W C, et al. Photoluminescence and Raman analysis of novel ZnO tetrapod and multipod nanostructures[J]. Appl Surf Sci,2010,256(22):6814.
14 Bacsa R R, Jeannette D, Marc V, et al. Synthesis and structure-property correlation in shape-controlled ZnO nanoparticles prepared by chemical vapor synthesis and their application in dye-sensitized solar cells[J]. Adv Funct Mater,2009,19(6):875.
15 Najim M, et al. Ultra-wide bandwidth with enhanced microwave absorption of electroless Ni-P coated tetrapod-shaped ZnO nano- and microstructures[J]. Phys Chem Chem Phys,2015,17(35):22923.
16 Zhou X T, Lin T H, Liu Y H, et al. Structural, optical, and improved field-emission properties of tetrapod-shaped Sn-doped ZnO nanostructures synthesized via thermal evaporation[J]. ACS Appl Mater Interfaces,2013,5(20):10067.
17 Mishra Y K, Modi G, Cretu V, et al. Direct growth of freestanding ZnO tetrapod networks for multifunctional applications in photocatalysis, UV photodetection, and gas sensing[J]. ACS Appl Mater Interfaces,2015,7(26):14303.
18 Zhao Y N, Cao M S, Jin H B, et al. Catalyst-free synthesis, growth mechanism and optical properties of multipod ZnO with nanonail-like legs[J]. Scr Mater,2006,54(12):2057.
19 Silva R A, Orlandi M O. Influence of synthesis route on the radiation sensing properties of ZnO nanostructures[J]. J Nanomater,2016,2016(18):1.
20 Zhao G L, Xia L, Wu S S, et al. Ultrafast and mass production of ZnO nanotetrapods by induction-heating under air ambient[J]. Mater Lett,2014,118(3):126.
21 Lee C H, Chiu W H, Lee K M, et al. The influence of tetrapod-like ZnO morphology and electrolytes on energy conversion efficiency of dye-sensitized solar cells[J]. Electrochim Acta,2010,55(28):8422.
22 Jiang J Y, Li Y F, Tan S W, et al. Synthesis of zinc oxide nanotetrapods by a novel fast microemulsion-based hydrothermal method[J]. Mater Lett,2010,64(20):2191.
23 Umar A. Growth of multipod ZnO architectures made by accumulation of hexagonal nanorods for dye sensitized solar cell (DSSC) application[J]. J Nanosci Nanotechnol,2015,15(9):6801.
24 Alsultany F H, Hassan Z, Ahmed N M. Large-scale uniform ZnO tetrapods on catalyst free glass substrate by thermal evaporation method[J]. Mater Res Bull,2016,79:63.
25 Iwanaga H, Fujii M, Takeuchi S. Growth model of tetrapod zinc oxide particles[J]. J Cryst Growth,1993,134(3):275.
26 Dai Y, Zhang Y, Wang Z L. The octa-twin tetraleg ZnO nanostructures[J]. Solid State Commun,2003,126(11):629.
27 Zheng K, Xu C X, Zhu G P, et al. Formation of tetrapod and multipod ZnO whiskers[J]. Physica E,2008,40(8):2677.
28 Feng L B, Liu A H, Ma Y Y, et al. Structural and optical properties of ZnO whiskers grown on ZnO-coated silicon substrates by non-catalytic thermal evaporation process[J]. Physica E,2010,42(7):1928.
[1] 魏彦平, 魏凤春, 朱青松, 刘琦, 郭子涵. 金属-聚合物表面微纳形态的构筑与研究[J]. 材料导报, 2024, 38(19): 23090143-9.
[2] 罗文柳, 杨玲, 叶懋, 欧阳竑, 许积文, 唐纳. (K0.5Na0.5)NbO3-(Ca0.5Sm0.5)(Mg0.5Nb0.5)O3铁电陶瓷的光致介电响应与光致发光[J]. 材料导报, 2024, 38(18): 23040126-7.
[3] 田小革, 李光耀, 陈功, 姚世林, 黄雪梅, 王俊杰, 陆劲州. TPU/Nano-ZnO复合改性沥青的性能研究及微观机制[J]. 材料导报, 2024, 38(16): 23050071-10.
[4] 孙启萌, 孙淼, 祁艳菲, 金国庆, 周兴海, 吕丽华, 魏春艳, 高原. 三维光热蒸发器结构设计理念研究进展[J]. 材料导报, 2024, 38(14): 23030100-9.
[5] 李雪, 周明宇, 韩朋, 戚桂村, 高达利, 陶胜洋, 王玉超. 高效太阳能驱动海水淡化的最新研究进展[J]. 材料导报, 2024, 38(13): 22110120-16.
[6] 陆泉芳, 郝小霞, 冯妍, 马晓娟, 王波, 俞洁. 阴极辉光放电电解制备纳米ZnO[J]. 材料导报, 2024, 38(13): 22060298-7.
[7] 张伟, 杨旭, 陈晓通, 任军强, 卢学峰. 纳米结构金属材料制备工艺及强化稳定方式研究进展[J]. 材料导报, 2023, 37(S1): 23010123-16.
[8] 何绪林, 叶勤燕, 罗坤, 郑兴平, 冉小龙, 廖成. 高精准度检测紧固件轴向预紧力的薄膜压电传感器的研究[J]. 材料导报, 2023, 37(7): 21080201-4.
[9] 张毅, 韩昭, 白园蕊, 鲍艳, 马建中, 叶楠. 基于聚苯乙烯模板的金纳米碗结构的制备及二次电子发射特性[J]. 材料导报, 2023, 37(7): 21060137-5.
[10] 简燕, 杨文静, 杨磊, 宋绍意, 倪婕, 何银芳. 纳米多孔硅的多片制备及其性能表征[J]. 材料导报, 2022, 36(Z1): 22010200-6.
[11] 李吉泰, 展悦, 冯明珠, 崔永岩. 超亲水-空气疏油水下超疏油不锈钢网的制备及性能[J]. 材料导报, 2022, 36(Z1): 22010079-5.
[12] 王南南, 李继文, 刘伟, 李武会, 张玉栋, 雷金坤, 徐流杰. 铝钼共掺杂氧化锌粉末的制备及光电性能研究[J]. 材料导报, 2022, 36(4): 20090212-7.
[13] 鲁春驰, 王影, 王东征. 涂布正极表面丝网印刷氧化锌颗粒对锂离子电池性能的影响[J]. 材料导报, 2022, 36(21): 21050056-5.
[14] 周裕杰, 蔡高峰, 董建峰. 介质材料的有序微纳结构及其显色研究进展[J]. 材料导报, 2022, 36(20): 20100034-9.
[15] 陈鑫, 刘凌云, 陶马冠宇, 王晓光, 柳建军. 用于电机散热的定形复合相变材料研究[J]. 材料导报, 2022, 36(19): 21060037-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed