Please wait a minute...
材料导报  2018, Vol. 32 Issue (16): 2889-2896    https://doi.org/10.11896/j.issn.1005-023X.2018.16.034
  高分子与聚合物基复合材料 |
CF8611/AC531复合材料的电化学特性及其与7B04-T74铝合金的电偶腐蚀仿真
陈跃良, 王安东, 卞贵学, 张勇
海军航空大学青岛校区,青岛 266041
Electrochemical Characteristic of CF8611/AC531 Composite and the Galvanic Corrosion Simulation when Coupled with 7B04-T74 Aluminum Alloy
CHEN Yueliang, WANG Andong, BIAN Guixue, ZHANG Yong
Naval Aviation University Qingdao Campus, Qingdao 266041
下载:  全 文 ( PDF ) ( 5855KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作设计了CF8611/AC531复合材料的正面(FS)试件和侧面(SS)试件及其在3.5% NaCl+12.5% Cu2SO4电解液中的极化试验。借助电化学工作站、扫描电镜和能谱仪等设备,测量了CF8611/AC531复合材料、7B04-T74铝合金在不同环境条件下的极化曲线及二者的电偶腐蚀参量,观察了极化前后CF8611/AC531复合材料、电偶腐蚀后7B04-T74铝合金的微观形貌,分析了FS试件在含Cu2+电解液中极化后表面的物质成分。基于稳态腐蚀场和参数化扫描技术,使用Comsol软件建立了在磨损状态下CF8611/AC531复合材料与7B04-T74铝合金的电偶腐蚀动态模型。结果表明:CF8611/AC531复合材料性能稳定,但原始加工表面存在碳纤维裸露缺陷;阴极反应速率与碳纤维裸露面积密切相关,根据试验结果划分了复合材料表面的活性阴极区和惰性阴极区;在电偶腐蚀中,7B04-T74铝合金的主要腐蚀形式为点蚀,未见复合材料失效;建立的电偶腐蚀模型有效、可用,总电偶电流与碳纤维裸露面积呈正线性相关,关系式为Ig=(2.794 1S+62.994)×10-7 A;当SFS∶SSS=5.53∶1时,FS试件和SS试件对7B04-T74铝合金试件的电偶效应相同。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈跃良
王安东
卞贵学
张勇
关键词:  复合材料  电化学  铝合金  电偶腐蚀  仿真    
Abstract: The front surface (FS) specimen and side surface (SS) specimen of CF8611/AC531 composite and the polarization test of them in the electrolyte with 3.5% NaCl+12.5% Cu2SO4 were designed. By means of the electrochemical workstation, scanning electron microscope, energy spectrometer and other devices, the potentiodynamic polarization curves and galvanic corrosion parameters of the composite and 7B04-T74 aluminum alloy in different electrolytes were measured, meanwhile the microstructure and component were observed and analyzed. Based on the steady corrosion field and the parametric scanning technology, a dynamic model for galvanic corrosion under the wear status of composite was established by Comsol software. The results show that, the perfor-mance of the composite is stable, but there are some carbon fiber exposed defects on the original surface. The cathodic reaction rate is closely related to the area of exposed carbon fiber, and the surface of the composite is divided into the active cathode region and inert cathode region. The main corrosion form of the aluminum alloy is pitting when coupled with composite, and no failure of composite. The galvanic corrosion model established here is valid and available. There is a positive linear correlation between the total galvanic current and the exposed area of carbon fiber, the formula is Ig=(2.794 1S+62.994)×10-7. When the area ratio of FS to SS is about 5.53∶1, the galvanic effect of them to the aluminum alloy is the same. Three reasons which will reduce the failure risk of the composite in galvanic corrosion are gave out.
Key words:  composite    electrochemistry    aluminum alloy    galvanic corrosion    simulation
               出版日期:  2018-08-25      发布日期:  2018-09-18
ZTFLH:  V252.2  
基金资助: 国家自然科学基金(51075394)
作者简介:  陈跃良:男,1962年生,博士,教授,博士研究生导师,主要从事飞机结构强度、腐蚀与防护等研究 E-mail:cyl0532@sina.com
引用本文:    
陈跃良, 王安东, 卞贵学, 张勇. CF8611/AC531复合材料的电化学特性及其与7B04-T74铝合金的电偶腐蚀仿真[J]. 材料导报, 2018, 32(16): 2889-2896.
CHEN Yueliang, WANG Andong, BIAN Guixue, ZHANG Yong. Electrochemical Characteristic of CF8611/AC531 Composite and the Galvanic Corrosion Simulation when Coupled with 7B04-T74 Aluminum Alloy. Materials Reports, 2018, 32(16): 2889-2896.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.16.034  或          http://www.mater-rep.com/CN/Y2018/V32/I16/2889
1 Chen Y L, Wang D D, Zhang Y, et al. Research for galvanic corrosion between T700 CFRP and 2A12 aluminum alloy[J]. Equipment Environmental Engineering,2014,15(6):40(in Chinese).
陈跃良,王冬冬,张勇,等.T700碳纤维环氧树脂复合材料与2A12铝合金电偶腐蚀研究[J].装备环境工程,2014,15(6):40.
2 Lu F. Effect of composites on the contacting corrosion of aluminum alloy[J]. Surface Technology,1992,12(3):139.
3 Alias M N, Brown R. Corrosion behavior of carbon fiber composites in the marine environment[J]. Corrosion Science,1993,35(4):395.
4 Ireland R, Arronche L, La Saponara V. Electrochemical investigation of galvanic corrosion between aluminum 7075 and glass fiber/epoxy composites modified with carbon nanotubes[J]. Composites Part B: Engineering,2012,43(2):183.
5 Ireland R, Arronche L, La Saponara V. Electrochemical investigation of galvanic corrosion between aluminum 7075 and multiscale glass fiber/epoxy composites[J]. Composites Part B: Engineering,2012,56(5):171.
6 Pan J Q, Li P Y. Experimental study on galvanic corrosion of aluminum alloy and carbon/epoxy composite[J]. Aerospace Materials Technology,1993,12(5):19.
7 Gao M T, Xu C G, Du Z Y, et al. Contact corrosion between carbon fiber reinforce composite and high-strength materials[J]. Acta Aeronautica et Astronautica Sinica,1993,14(12):662.
8 Hu Y L, Li D. Galvanic corrosion behavior between graphite/epoxy composite material (GECM) and metal[J]. Corrosion Science and Protection Technology,1998,16(2):93(in Chinese).
胡艳玲,李荻.碳纤维/环氧树脂复合材料与金属的电偶腐蚀行为[J].腐蚀科学与防护技术,1998,16(2):93.
9 Fovet Y, Pourreyron L, Gal J Y. Corrosion by galvanic coupling between carbon fiber posts and different alloys[J]. Dental Materials,2000,16(5):364.
10 Chen L, Wu X H, Jiang Z H. Galvanic corrosion behavior of antirust aluminum and carbon fiber composite[J]. Corrosion & Protection,2008,29(2):59(in Chinese).
陈龙,吴晓宏,姜兆华.防锈铝与碳纤维复合材料电偶腐蚀行为[J].腐蚀与防护,2008,29(2):59.
11 Ma Z Y, Xie F Q. Corrosion behavior of aluminum alloy and composite T700 in artificial seawater[J]. Materials Protection,2009,42(3):27(in Chinese).
马宗耀,谢发勤.人工海水中铝合金与复合材料T700电偶的腐蚀性能[J].材料保护,2009,42(3):27.
12 Su P B, Wu X H, Jiang Z H, et al. Galvanic corrosion of carbon fiber composite and LY12 aluminum alloy[J]. Corrosion & Protection,2014,35(1):37(in Chinese).
苏培博,吴晓宏,姜兆华,等.碳纤维复合材料与LY12铝合金的电偶腐蚀[J].腐蚀与防护,2014,35(1):37.
13 Lu F, Zhong Q P, Cao C X. Galvanic corrosion and controlling of GECM and metals in atmospheric environment[J]. Materials Protection,2002,35(12):19(in Chinese).
陆峰,钟群鹏,曹春晓.大气环境条件下复合材料与金属电偶腐蚀及控制方法研究[J].材料保护,2002,35(12):19.
14 Lu F, Zhang X Y, Tang Z H, et al. Galvanic corrosion behavior between carbon fiber reinforced plastic materials and aluminum alloys[J]. Journal of Chinese Society for Corrosion and Protection,2005,25(1):39.
15 Srinivasan R, Nelson J A, Hihara L H. Development of guidelines to attenuate galvanic corrosion between mechanically-coupled aluminum and carbon-fiber reinforced epoxy composites using insulation layers[J]. Journal of the Electrochemical Society,2015,162(10):545.
16 Srinivasan R, Hihara L H. Utilization of hydrophobic coatings on insulative skirts to attenuate galvanic corrosion between mechanically-fastened aluminum alloy and carbon-fiber reinforced polymer-matrix composites[J]. Electrochemistry Communications,2016,72(12):96.
17 Chen L. The research of galvanic corrosion rule and protection between carbon fiber composite material and metal[D]. Harbin: Harbin Institute of Technology,2007(in Chinese).
陈龙.碳纤维复合材料与金属电偶腐蚀规律及防护研究[D].哈尔滨:哈尔滨工业大学,2007.
18 Lu F, Zhong Q P, Cao C X. Progress of galvanic corrosion between the graphite epoxy composite materials and metals[J]. Material Engineering,2003,21(4):39(in Chinese).
陆峰,钟群鹏,曹春晓.碳纤维环氧复合材料与金属电偶腐蚀的研究进展[J].材料工程,2003,21(4):39.
19 Hihara L H, Latanision R M. Suppressing galvanic corrosion in graphite/aluminum metal-matrix composites[J]. Corrosion Science,1993,34(4):655.
20 Hihara L H, Latanision R M. Galvanic corrosion of aluminum-matrix composites[J]. Corrosion-Houston Tx-,1992,48(7):33.
21 Chen S J. Large aircraft and composites[J]. Aeronautical Manufacturing Technology,2008,22(15):32(in Chinese).
陈绍杰.大型飞机与复合材料[J].航空制造技术,2008,22(15):32.
22 Li Z H, Xiong B Q, Zhang Y A, et al. Microstructural evolution of aluminum alloy 7B04 thick plate by various thermal treatments[J]. Chinese Journal of Nonferrous Metals,2008,18(1):40.
23 Chen Y L, Wang Z F, Bian G X, et al. Study on equivalent conversion of galvanic corrosion between dissimilar metals of airplane in NaCl solution with different concentrations[J]. Acta Aeronautica et Astronautica Sinica,2017,38(3):260(in Chinese).
陈跃良,王哲夫,卞贵学,等.不同浓度NaCl溶液下典型铝/钛合金电偶腐蚀当量折算关系[J].航空学报,2017,38(3):260.
24 Yin L, Jin Y, Leygraf C, et al. Numerical simulation of micro-galvanic corrosion in al alloys: Effect of geometric factors[J]. Journal of the Electrochemical Society,2017,164(2):75.
25 Jia J X, Atrens A, Song G, et al. Simulation of galvanic corrosion of magnesium coupled to a steel fastener in NaCl solution[J]. Materials and Corrosion,2005,56(7):468.
26 Jia J X, Song G, Atrens A. Influence of geometry on galvanic corrosion of AZ91D coupled to steel[J]. Corrosion Science,2006,48(8):2133.
27 Mandel M, Krüger L. Determination of pitting sensitivity of the aluminium alloy EN AW-6060-T6 in a carbon-fiber reinforced plastic/aluminium rivet joint by finite element simulation of the galvanic corrosion process[J]. Corrosion Science,2013,73:172.
28 Wang C G, Chen Y L, Zhang Y, et al. Simulation study on filiform corrosion of aircraft aluminum alloy/coating system[J]. Material Development and Application,2017,31(1):80(in Chinese).
王晨光,陈跃良,张勇,等.飞机铝合金/涂层体系丝状腐蚀的仿真研究[J].材料开发与应用,2017,31(1):80.
29 Udonatus D, Gethompson E T, Jaomotoyinbo A O, et al. Corrosion pathways in aluminium alloys[J]. Transactions of Nonferrous Me-tals Society of China,2017,27(1):55.
30 Ma Y, Li L B, Gao G X, et al. Effect of montmorillonite on the io-nic conductivity and electrochemical properties of a composite solid polymer electrolyte based on polyvinylidenedifluoride/polyvinyl alcohol matrix for lithium ion batteries[J]. Electrochimica Acta,2016,187(4):535.
31 Tavakkolizadeh M, Saadatmanesh H. Galvanic corrosion of carbon and steel in aggressive environments[J]. Journal of Composites for Construction,2001,5(3):200.
32 Yang S H B, Babu P, Chua S F S, et al. Carbon dioxide hydrate kinetics in porous media with and without salts[J]. Applied Energy,2016,162(5):1131.
33 Mueller Y, Tognini R, Mayer J, et al. Anodized titanium and stainless steel in contact with CFRP: An electrochemical approach consi-dering galvanic corrosion[J]. Journal of Biomedical Materials Research Part A,2007,82(4):936.
34 Bala H, Dymek M. Determination of corrosion rate of porous, liquid permeable materials on the example of hydride powder composite[J]. Ochrona przed Korozja,2017,6(4):79.
35 Hihara L H, Panquites I V P. Method of electrochemical machining (ECM) of particulate metal-matrix composites (MMcs): US,110,351[P]. 2000-08-29.
[1] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[2] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[3] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[4] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[5] 王储, 周珏辉, 周添, 陈亦伦, 宋荟荟. 大功率电磁波照射下超材料多物理场耦合行为[J]. 材料导报, 2019, 33(z1): 84-88.
[6] 钱鑫, 邓丽芳, 王鲁丰, 单锐, 袁浩然. 二氧化碳电化学还原技术研究进展[J]. 材料导报, 2019, 33(z1): 102-107.
[7] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[8] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[9] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[10] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[11] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[12] 施方长, 王玉, 高延敏. 改性含N小分子用于金属表面锈层处理对环氧涂层防腐性能的研究[J]. 材料导报, 2019, 33(z1): 523-526.
[13] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[14] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[15] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed