Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (8): 1323-1327    https://doi.org/10.11896/j.issn.1005-023X.2018.08.022
  材料研究 |
Cr含量降低对H13钢组织与力学性能的影响
张金祥1, 欧阳希1, 周健1, 张济山2
1 赣州有色冶金研究所,赣州 341000;
2 北京科技大学新金属材料国家重点实验室,北京 100083
Study on Microstructure and Mechanical Properties of H13 Tool Steel After Chromium Content Reduction
ZHANG Jinxiang1,OUYANG Xi1,ZHOU Jian1 ,ZHANG Jishan2
1 Ganzhou Non-ferrous Metallurgy Research Institute,Ganzhou 341000;
2 State Key Laboratory for Advanced Metals and Materials,University of Science and Technology Beijing,Beijing 100083
下载:  全 文 ( PDF ) ( 3838KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 对比了Cr含量降低为3%的3Cr-H13钢与Cr含量为5%的传统H13钢性能的差异,利用SEM、TEM、XRD进行微观组织与相组成分析,研究了Cr对H13钢组织性能的影响。结果表明,Cr含量的降低明显提高了H13钢的回火稳定性与高温强度,其原因主要与回火组织中马氏体的回复程度及二次析出碳化物的种类有关。传统H13钢在650 ℃回火时,马氏体基本回复完全,基体强度明显下降,并在原马氏体板条界和晶界上析出了较多的尺寸为120 nm左右的近球形Cr7C3和M6C型碳化物,第二相强化效果降低;而Cr含量降低为3%的3Cr-H13钢在650 ℃回火后,基体依然为板条马氏体,板条内保持较高的位错密度,同时板条内析出的大量细小弥散的短棒状VC,在起到弥散强化作用的同时还钉扎位错,推迟了马氏体的回复,从而提高了高温性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张金祥
欧阳希
周健
张济山
关键词:  H13钢  Cr含量  微观组织  力学性能    
Abstract: Properties of traditional H13 steel with 5% Cr and modified H13 steel with 3% Cr were compared, relevant microstructures and phase composition were also investigated using scanning electron microscopy, transmission electron microscopy and X-ray diffraction, and the effect of Cr on the microstructures and properties of H13 steel were studied. The results demonstrated that the tempering resistance and high temperature strength of H13 steel were remarkably enhanced by reducing the Cr content, mainly related to the level of recovery of martensite and the types of precipitates during tempering. When the traditional H13 steel was tempered at 650 ℃, the martensite was almost completely recovered and a large amount of near spherical Cr7C3 and M6C type carbides with a size of about 120 nm were precipitated along the original martensite lath boundaries and grain boundaries, reducing the second phase reinforcement effect. But for the modified H13 steel with 3% Cr, the lath martensite with high dislocation density was still observed after 650 ℃ tempering, and intensive plate-like VC type carbides with a length of about 25 nm and thickness about 2.5 nm were found within the martensite lath. The dispersed VC carbide precipitated during tempering significantly inhibited the recovery of martensite, thus enhancing the high temperature properties.
Key words:  H13 tool steel    chromium content    microstructure    mechanical property
出版日期:  2018-04-25      发布日期:  2018-05-11
ZTFLH:  TG142.1  
基金资助: 国家重点基础研究发展计划(2011CB606303)
作者简介:  张金祥:1987年生,博士,工程师,主要研究方向为金属材料制备与加工 E-mail:zjx02161602@163.com
引用本文:    
张金祥, 欧阳希, 周健, 张济山. Cr含量降低对H13钢组织与力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1323-1327.
ZHANG Jinxiang,OUYANG Xi,ZHOU Jian ,ZHANG Jishan. Study on Microstructure and Mechanical Properties of H13 Tool Steel After Chromium Content Reduction. Materials Reports, 2018, 32(8): 1323-1327.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.08.022  或          https://www.mater-rep.com/CN/Y2018/V32/I8/1323
1 Wang Yanjun, Li Pengwei.Optimization on heat treatment process of H13 steel[J].Heat Treatment,2013,34(2):22(in Chinese).
王彦俊,李鹏伟.H13钢热处理工艺优化[J].热处理,2013,34(2):22.
2 Guimaraes J R C, Branco J R T, Kajita T. Partial substitution of niobium for vanadium in H-13 hot-work tool steel[J].Materials Science Technology,1986,2:1074.
3 Jiang Shiwei,Zhou Guoxing.Heat treatment of especially large-sized H13 steel die[J].Heat Treatment,2015,30(4):41(in Chinese).
蒋世伟,周国星.H13钢特大型模具的热处理[J].热处理,2015,30(4):41.
4 Norstrom L A, Ohrberg N. Thermal-fatigue behaviour of hot-work tool steels[J].Metals Technology,1981,8:22.
5 Wang Ming, Ma Dangshen, Liu Zhentian, et al. Effect of Nb on segregation, primary carbides and toughness of H13 steel[J].Acta Me-tallurgica Sinica,2014,50(3):285(in Chinese).
王明,马党参,刘振天,等.Nb对芯棒用H13钢偏析、液析碳化物及力学性能的影响[J].金属学报,2014,50(3):285.
6 Michaud P, Delagnes D, Lamesle P, et al. The effect of the addition of alloying elements on carbide precipitation and mechanical properties in 5% chromium martensitic steels[J].Acta Materialia,2007,55:4877.
7 Du Zhiwei, Liu Zongchang, Zhu Wenfang, et al.Study on the phase transformation of H13 steel during quenching and tempering[J].Journal of Baotou University of Iron and Steel Technology,2001,20(1):34(in Chinese).
杜志伟,刘宗昌,朱文方,等.H13钢淬火、回火过程中相变的研究[J].包头钢铁学院学报,2001,20(1):34.
8 Mebarki N, Delagnes D, Lamesle P, et al. Relationship between microstructure and mechanical properties of a 5% Cr tempered martensitic tool steel[J].Materials Science and Engineering A,2004,s387-389:171.
9 Delagnes D, Lamesle P, Mathon M H, et al. Influence of silicon content on the precipitation of secondary carbides and fatigue properties of a 5%Cr tempered martensitic steel[J].Materials Science and Engineering A,2005,394:435.
10 Kayser F, Cohen M. Carbides in high-speed steel-their nature and quantity[J].Metal Progress,1952,61(6):79.
11 Lee K B, Yang H R, Kwon H. Effects of alloying additions and austenitizing treatments on secondary hardening and fracture behavior for martensitic steels containing both Mo and W[J].Metallurgical & Materials Transactions A,2001,32(7):1659.
12 Irani J J, Honeycomb R W K. Clustering and precipitation in iron-molybdenum-carbon alloys[J].Journal of Iron and Steel Research, International,1966,203:826.
13 Kwon H, Lee K B, Yang H R, et al. Effect of alloying additions on secondary hardening behavior of Mo-containing steels[J].Metallurgical & Materials Transactions A,1997,28:775.
14 Zhou Q C, Wu X C, Shi N N, et al. Microstructure evolution and kinetic analysis of DM hot-work die steels during tempering[J].Materials Science and Engineering. A,2011,528(18):5696.
15 Kuo K. Alloy carbides precipitated during the fourth stage of tempering[J].Journal of Iron and Steel Research, International,1956,184:258.
16 Baker R G, Nutting J J. The tempering of 2.25Cr%-1%Mo steel after quenching and normalizing[J].Journal of Iron and Steel Research, International,1959,202:257.
17 Smith E. An investigation of secondary hardeningof a 1% vanadium-0.2% carbon steel[J].Acta Metallurgica,1966,14:583.
18 Wang R, Dunlop G L. The crystallography of secondary carbide precipitation in high speed steel[J].Acta Metallurgica,1984,32(10):1591.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[6] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[7] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[8] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[9] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[10] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[11] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[12] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[13] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[14] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[15] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed