Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (1): 149-158    https://doi.org/10.11896/j.issn.1005-023X.2018.01.019
     材料综述 |
碳纳米管在水泥基复合材料中的分散方法研究进展
朱平1,2(),邓广辉1,邵旭东3
1 湖南大学土木工程学院,长沙 410082
2 湖南大学汽车车身先进设计制造国家重点实验室,长沙 410082
3 湖南大学风工程与桥梁工程湖南省重点实验室,长沙 410082
Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites
Ping ZHU1,2(),Guanghui DENG1,Xudong SHAO3
1 College of Civil Engineering, Hunan University, Changsha 410082
2 State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082
3 Key Laboratory for Wind and Bridge Engineering of Hunan Province, Hunan University, Changsha 410082
下载:  全 文 ( PDF ) ( 1611KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

碳纳米管(CNTs)作为性能优越的新型纳米材料被广泛用于增强基体材料,但是其易团聚且难以分散,使得实现其在基体材料中的均匀分散成为研究的重点。详细介绍了CNTs在增强水泥基复合材料研究中的分散方法与分散机理,并比较了各种分散方法的优缺点。重点论述了超声时间、酸处理时间、表面活性剂种类与掺量等因素对CNTs分散效果的影响,并讨论了评价CNTs分散效果的表征方法。将CNTs均匀分散到水泥基体中,可以显著提高复合材料的各项力学性能。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱平
邓广辉
邵旭东
关键词:  碳纳米管  水泥基复合材料  分散方法  分散机理  表征方法  力学性能    
Abstract: 

As a new nano-material with superior performance, carbon nanotubes (CNTs) have been widely used to enhance the matrix materials. Due to the characteristic of easy agglomeration of CNTs, how to disperse CNTs uniformly in the matrix materials capture much focus in the research field. The common dispersion methods and their mechanisms of CNTs in the cement-based composites are introduced in detail, and their respective advantages and disadvantages are compared. The effects of ultrasonic time, acid treatment time, the type and amount of surfactant on the dispersion of CNTs are fully illustrated. On this basis, the methods for characterizing dispersion effect of CNTs are also discussed. The mechanical properties of the composites can be significantly improved by dispersing CNTs into the cement matrix.

Key words:  carbon nanotubes (CNTs)    cement-based composites    dispersion methods    dispersion mechanism    characterization method    mechanical properties
出版日期:  2018-01-10      发布日期:  2018-01-10
ZTFLH:  TB332  
基金资助: 湖南省自然科学基金(2015JJ2034);中央高校基本科研业务费(531107040754)
作者简介:  朱平:男,1977年生,博士,助理教授,主要从事超高性能混凝土及组合结构桥梁的研究 E-mail: pingzhu@hnu.edu.cn
引用本文:    
朱平,邓广辉,邵旭东. 碳纳米管在水泥基复合材料中的分散方法研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 149-158.
Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites. Materials Reports, 2018, 32(1): 149-158.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.01.019  或          https://www.mater-rep.com/CN/Y2018/V32/I1/149
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] Iijima S . Helical microtubules of graphitic carbon[J]. Nature, 1991,354(6348):56.
[2] Qian D, Wagner G J, Liu W K , et al. Mechanics of carbon nanotubes[J]. Applied Mechanics Reviews, 2002,55(6):495.
[3] Salvetat J P, Bonard J M, Thomson N H , et al. Mechanical properties of carbon nanotubes[J]. Applied Physics A, 2010,69(3):255.
[4] Wong E W, Sheehan P E, Lieber C M . Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes[J]. Science, 1997,277(5334):1971.
[5] Gu P, Wang Y, Li G H . Progress in mechanical properties of carbon nanotube and carbon-based-nanotube composites[J]. Advance in Mechanics, 2002,32(4):563(in Chinese).
[5] 辜萍, 王宇, 李广海 . 碳纳米管的力学性能及碳纳米管复合材料研究[J]. 力学进展, 2002,32(4):563.
[6] Chen W X, Chen W L, Xu Z D , et al. Characteristics of carbon nanotubes and high-quality composites[J]. Acta Materiae Composite Sinica, 2001,18(4):1(in Chinese).
[6] 陈卫祥, 陈文录, 徐铸德 , 等. 碳纳米管的特性及其高性能的复合材料[J]. 复合材料学报, 2001,18(4):1.
[7] Xu S L, Gao L L, Jin W J . Mechanical properties of aligned multiwalled carbon nanotube-M140 mortar composites[J]. Chinese Science (E: Technical Science) , 2009,39(7):1228(in Chinese).
[7] 徐世烺, 高良丽, 晋卫军 . 定向多壁碳纳米管-M140砂浆复合材料的力学性能[J]. 中国科学( E辑:技术科学), 2009,39(7):1228.
[8] Ma X P . Piezoresistivity of carbon nanotubes-cement composite[D]. Jinan: Shandong University, 2013(in Chinese).
[8] 马雪平 . 碳纳米管水泥基复合材料压敏性能研究[D]. 济南:山东大学, 2013.
[9] Guo Zhiqiang . Study on the electromagnetic wave absorbing properties of multi-walled carbon nanotube/cement composites[D]. Dalian: Dalian University of Technology, 2013(in Chinese).
[9] 郭志强 . 碳纳米管水泥基复合材料吸波性能研究[D]. 大连: 大连理工大学, 2013.
[10] Iijima S Wang B M Song K . Research progress of carbon nanotubes cement-based composite materials[J]. Low Temperature Architecture Technology , 2011(5):1(in Chinese).
[10] 王宝民, 宋凯 . 碳纳米管水泥基复合材料研究进展[J]. 低温建筑技术, 2011(5):1.
[11] Ma Y Wang D Wang Q . Preparation of multi-wall carbon nanotubes reinforced cement composites and study of its mechanical properties[J]. Concrete , 2014(6):72(in Chinese).
[11] 马颖, 王丹, 王晴 . 多壁碳纳米管水泥基复合材料的制备与力学性能研究[J]. 混凝土, 2014(6):72.
[12] ChangL W Sun Y Z Yue . Experimental study about flexural property of carbon-nanotube reinforced cement mortar beam[J]. Concrete , 2011(10):108(in Chinese).
[12] 常利武, 孙玉周, 乐金朝 . 碳纳米管增强水泥砂浆梁弯曲性能试验研究[J]. 混凝土, 2011(10):108.
[13] LiG Y, Wang P M . Microstructure and properties of carbon nanotube cement matrix composites[J]. Journal of the Chinese Ceramic Society , 2005,33(1):105(in Chinese).
[13] 李庚英, 王培铭 . 碳纳米管-水泥基复合材料的力学性能和微观结构[J]. 硅酸盐学报, 2005,33(1):105.
[14] ParveenS, Rana S, Fangueiro R , et al. Microstructure and mechanical properties of carbon nanotube reinforced cementitious composites developed using a novel dispersion technique[J]. Cement and Concrete Research, 2015,73:215.
[15] LiG Y, Wang P M . Effect of surface treatment on volume resistance and sensing effect of carbon nanotube-reinforced cement composites[J]. Sichuan Building Science , 2007,12(6):143(in Chinese).
[15] 李庚英, 王培铭 . 表面改性对碳纳米管碳-水泥基复合材料导电性能及机敏性的影响[J]. 四川建筑科学研究, 2007,12(6):143.
[16] Meng , . Piezoresistive properties and conductive mechanism of high dispersion carbon nanotube-cement based composites[D]. Harbin: Harbin Institute of Technology, 2014(in Chinese).
[16] 蒙井 . 高分散性碳纳米管/水泥基复合材料压敏性能和导电机理[D]. 哈尔滨:哈尔滨工业大学, 2014.
[17] HuJ, Zhang Y J, Li P , et al. Electron microscopic study on disperse state of carbon nanotubes[J]. Journal of Chinese Electron Microscopy Society , 2003,22(5):415(in Chinese).
[17] 胡洁, 张宇军, 李鹏 , 等. 碳纳米管分散形态的电镜研究[J]. 电子显微学报, 2003,22(5):415.
[18] QiuL J, Zhang G F, Wang W G . The effects of ultrasonic oscillation on the form of carbon nanotubes[J]. Journal of Petrochemical Universities , 2013,26(3):57(in Chinese).
[18] 邱立杰, 张国福, 王文广 . 超声波振荡对碳纳米管形态的影响[J]. 石油化工高等学校学报, 2013,26(3):57.
[19] ParveenS, Rana S, Fandueiro R . A review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites[J]. Journal of Nanomaterials, 2013,2013(7):80.
[20] LiuA H, Zhang B, Wang H , et al. Study on mechanical properties of carbon nanotubes reinforced cement composites[J]. Journal of Hubei Polytechnic University , 2015,31(2):44(in Chinese).
[20] 刘爱红, 张兵, 王辉 , 等. 多壁碳纳米管增强水泥基复合材料力学性能的研究[J]. 湖北理工学院学报, 2015,31(2):44.
[21] XuS J, Xiao B L, Liu Z Y , et al. Microstructure and mechanical properties of CNT/Al composites fabricated by high energy ball-milling method[J]. Acta Metallurgica Sinica , 2012,48(7):882(in Chinese).
[21] 许世娇, 肖伯律, 刘振宇 , 等. 高能球磨法制备的碳纳米管增强铝基复合材料的微观组织和力学性能[J]. 金属学报, 2012,48(7):882.
[22] MartinC A, Sandler J K W, Windle A H , et al. Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites[J]. Polymer, 2005,46(3):877.
[23] ZhuY F, Zhang C, Wang J D , et al. Influence of electric field on dispersion of carbon nanotubes in liquids[J]. Journal of Dispersion Science & Technology, 2006,27(3):371.
[24] LvQ, Liu S, Gan Z Y , et al. Directional technology of carbon nanotubes in various dispersants[J]. Nanotechnology and Precision Engineering , 2009,7(1):1(in Chinese).
[24] 吕强, 刘胜, 甘志银 , 等. 不同分散剂中碳纳米管的定向操控技术[J]. 纳米技术与精密工程, 2009,7(1):1.
[25] LuoJ L . Fabrication and functional properties of multi-walled carbon nanotube/cement composites[D]. Harbin: Harbin Institute of Technology, 2009(in Chinese).
[25] 罗健林 . 碳纳米管水泥基复合材料制备及功能性能研究[D]. 哈尔滨:哈尔滨工业大学, 2009.
[26] NadlarM, Mahrholz T, Riedel U , et al. Preparation of colloidal carbon nanotube dispersions and their characterization using a disc centrifuge[J]. Carbon, 2008,46(41):1384.
[27] YuJ, Grossiord N, Koning C E , et al. Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution[J]. Carbon, 2007,45(3):618.
[28] AchilleasS, Mark H, Gianluca M , et al. Influence of acoustic cavitation on the controlled ultrasonic dispersion of carbon nanotubes[J]. Journal of Physical Chemistry B, 2013,117(48):15141.
[29] XiX P, Ma C F, Wang W . Application situation of ultrasonic technllogy[J]. Shanxi Chemical Industry , 2007,27(1):25(in Chinese).
[29] 席细平, 马重芳, 王伟 . 超声波技术应用现状[J]. 山西化工, 2007,27(1):25.
[30] MoR Y, Lin S Y, Wang C H . Methods of study on sound cavitation[J]. Applied Acoustics , 2009,28(5):389(in Chinese).
[30] 莫润阳, 林书玉, 王成会 . 超声空化的研究方法及进展[J]. 应用声学, 2009,28(5):389.
[31] XuZ H, Zhang H B, . Cavitation mechanism of ultrasonic cleaning[J].Harbin Railway Science and Technology , 2009(4):3(in Chinese).
[31] 徐忠华, 张洪波 . 超声清洗的空化作用机理[J].哈尔滨铁道科技, 2009(4):3.
[32] Wang D, Tian H, Li J W . Effects of ultrasonic osillations and surfactants on the dispersion property of CNTs[J]. Sci-Tech Information Development & Economy , 2009,19(29):141(in Chinese).
[32] 王栋, 田辉, 李建伟 . 超声震荡及化学试剂对碳纳米管分散性能的影响[J]. 科技情报开发与经济, 2009,19(29):141.
[33] LiQ Y, Ma Y L, Mao C , et al. Grafting modification and structural degradation of multi-walled carbon nanotubes under the effect of ultrasonics sonochemistry[J]. Ultrasonics Sonochemistry, 2009,16(6):752.
[34] ChengQ H, Debnath S, Gregan E , et al. Ultrasound-assisted SWNTs dispersion: Effects of sonication parameters and solvent properties[J]. Journal of Physical Chemistry C, 2010,114:8821.
[35] LiuT, Luo S D, Xiao Z W , et al. Preparative ultracentrifuge method for characterization of carbon nanotube dispersions[J]. Journal of Physical Chemistry, 2008,112(49):19193.
[36] ShiY H . Approach of dispersion and separation methods for single-walled carbon nanotubes[D]. Beijing: Beijing University of Chemical Technology, 2013(in Chinese).
[36] 史运华 . 单壁碳纳米管的分散与分离方法研究[D]. 北京:北京化工大学, 2013.
[37] KohB, Park J B, Hou X M , et al. Comparative dispersion studies of single-walled carbon nanotubes in aqueous solution[J]. Journal of Physical Chemistry, 2011,115:2627.
[38] VichchuladaP, Cauble M A, Abdi E A , et al. Sonication power for length control of single-walled carbon nanotubes in aqueous suspensions used for 2-dimensional network formation[J]. Journal of Physical Chemistry, 2010,114:12490.
[39] SuaveJ, Coelho L A F, Amico S C . Effect of sonication on thermo-mechanical properties of epoxy nanocomposites with carboxylated-SWNT[J]. Materials Science and Engineering A, 2009,509(1-2):57.
[40] ZhangJ L, Zhu H B, Liu X , et al. Research on dispersion of carbon nanotubes in cement based composite[J]. Journal of Wuhan University of Technology , 2012,34(5):6(in Chinese).
[40] 张姣龙, 朱洪波, 柳献 , 等. 碳纳米管在水泥基复合材料中的分散性研究[J]. 武汉理工大学学报, 2012,34(5):6.
[41] JiangL Q, Gao L . Effect of chemical treatment on the dispersion properties of carbon nanotubes[J]. Journal of Inorganic Materials , 2003,18(5):1135(in Chinese).
[41] 江琳沁, 高濂 . 化学处理对碳纳米管分散性能的影响[J]. 无机材料学报, 2003,18(5):1135.
[42] LiG Y, Wang P M, Zhao X H . Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes[J]. Carbon, 2005,43(6):1239.
[43] Wu C, . Experimental research of cement mortar reinforced by carbon nanotubes[D]. Beijing: Tsinghua University, 2013(in Chinese).
[43] 吴辰 . 碳纳米管水泥砂浆复合材料实验研究[D]. 北京:清华大学, 2013.
[44] ZhangF H . Study on carbon nanotube/carbon fiber multi-scale reinforcement and its composite interfacial properties[D]. Harbin: Harbin Institute of Technology, 2008(in Chinese).
[44] 张福华 . 碳纳米管/碳纤维多尺度增强体及其复合材料界面研究[D]. 哈尔滨:哈尔滨工业大学, 2008.
[45] ZhangJ W . Chemical graft of carbon nanotubes and the mechanical properties of CNTs/Carbon fiber reinforced epoxy composites[D]. Changsha: National University of Defense Technology, 2009(in Chinese).
[45] 张鉴炜 . 碳纳米管化学接枝及其连续碳纤维复合材料力学性能研究[D]. 长沙:国防科学技术大学, 2009.
[46] You J . Preperation on carbon nanotubes grafted carbon fiber milti-reinforce[D]. Harbin: Harbin Institute of Technology, 2007(in Chinese).
[46] 尤洁 . 碳纳米管接枝碳纤维复合增强体的制备[D]. 哈尔滨:哈尔滨工业大学, 2007.
[47] Mei L . Study on carbon nanotube/carbon fiber multi-scale structure and its interfacial reinforing effect[D]. Harbin: Harbin Institute of Technology, 2010(in Chinese).
[47] 梅蕾 . 碳纳米管/碳纤维多尺度结构制备及其界面增强效果研究[D]. 哈尔滨:哈尔滨工业大学, 2010.
[48] ShiY H, Ren L L, Li D Q . The progress on carbon nanotube dispersions[J]. Chemistry Bulletin , 2012,75(6):502(in Chinese).
[48] 史运华, 任玲玲, 李殿卿 . 碳纳米管分散研究进展[J]. 化学通报, 2012,75(6):502.
[49] IslamM F, Rojas E, Bergey D M , et al. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water[J]. Nano Letters, 2003,3(2):269.
[50] Xiao Q, Wang P H, Ji L L , et al. Dispersion of carbon nanotubes in aqueous solution with cationic surfactant CTAB[J]. Journal of Inorganic Materials , 2007,22(6):1122(in Chinese).
[50] 肖奇, 王平华, 纪伶伶 , 等. 分散剂CTAB对碳纳米管悬浮液分散性能的影响[J]. 无机材料学报, 2007,22(6):1122.
[51] LuoJ L, Duan Z D . The dispersion effect of diversified surfactants on multi-walled carbon nanotube in aqueous solution[J]. Fine Chemicals , 2008,25(8):733(in Chinese).
[51] 罗健林, 段忠东 . 表面活性剂对碳纳米管在水性体系中分散效果的影响[J]. 精细化工, 2008,25(8):733.
[52] Gong X Z, Tang J N, Gu K M . et al. Study of dispersion of carbon nanotubes[J]. Guangdong Chemical Industry , 2005(4):7(in Chinese.)
[52] 龚晓钟, 汤皎宁, 古坤明 , 等. 碳纳米管分散性的研究[J]. 广东化工, 2005(4):7.
[53] Han Y, . Dispersion of carbon nanotubes and the mechanical properties of carbon nanotubes reinforced cement-based composites[D]. Dalian: Dalian University of Technology, 2013(in Chinese).
[53] 韩瑜 . 碳纳米管的分散性及其水泥基复合材料力学性能[D]. 大连:大连理工大学, 2013.
[54] 54K-Gdoutos M S, Metaxa Z S, Shah S P . Highly dispersed carbon nanotube reinforced cement based materials[J]. Cement and Concrete Research, 2010,40(7):1052.
[55] VinodP V, Anyuan C , et al. Multifunctional composites using reinforced laminae with carbon nanotube forests[J]. Nature Materials, 2006,5:457.
[56] LiH P, Wang L H , et al. Dispersion of carbon nanotubes in hydroxyapatite powder by in situ chemical vapor deposition[J]. Materials Science and Engineering B, 2010,166(1):19.
[57] NasibulinA G, Shandakov S D, Nasibulina L I , et al. A novel cement-based hybrid material[J]. New Journal of Physics, 2009,11(2):023013.
[58] MudimelaP R, Nasibulina L I, Nasibulin A G , et al. Synjournal of carbon nanotubes and nanofibers on silica and cement matrix materials[J]. Journal of Nanomaterials, 2009,2009:29.
[59] Zhang C, Cao M L, Xu L , Research progress on multi-scale characteristic and multi-scale fiber reinforcing theory of concrete[J]. China Concrete and Cement Products , 2014(3):44(in Chinese).
[59] 张聪, 曹明莉, 许玲 . 混凝土多尺度特征与多尺度纤维增强理论研究进展[J]. 混凝土与水泥制品, 2014(3):44.
[60] Li D, , Surface modification of carbon fibers with carbon nanotubes prepared by in-situ grown method[D]. Xi’an: Xi’an University of Architecture and Technology, 2014(in Chinese).
[60] 李丹 . 表面原位生长碳纳米管表面改性碳纤维的研究[D]. 西安: 西安建筑科技大学, 2014.
[61] Wang C, , Interfacial enhancement mechanisms of carbon nanotube/carbon faber multi-scale composites[D]. Harbin: Harbin Institute of Technology, 2013(in Chinese).
[61] 王超 . 碳纳米管/碳纤维多尺度复合材料界面增强机理研究[D]. 哈尔滨:哈尔滨工业大学, 2013.
[62] ZhouX P, Yu L M, Guo Q H , et al. Surface modification of multiwalled carbon nanotubes and their dispersion in solvents[J]. New Chemical Materials , 2009,37(6):61(in Chinese).
[62] 周小平, 余腊妹, 郭乔辉 , 等. 多壁碳纳米管的表面修饰及其在溶剂中的分散性[J]. 化工新型材料, 2009,37(6):61.
[63] ZhangX E . Mechanical and frost resistance performance of multi-walled carbon nanotubes reinforced cement composites[J]. Bulletin of the Chinese Ceramic Society , 2015,34(9):2686(in Chinese).
[63] 张喜娥 . 碳纳米管水泥基复合材料的力学性能和抗冻性能研究[J]. 硅酸盐通报, 2015,34(9):2686.
[64] GaoL L . Study on mechanical properties of multi-walled carbon nanotubes reinforcing M140 DSPmortar[D]. Dalian: Dalian University of Technology, 2009(in Chinese).
[64] 高良丽 . 多壁碳纳米管增强M140DSP砂浆的力学性能研究[D]. 大连:大连理工大学, 2009.
[65] ZouB, Chen S J, Korayem A H , et al. Effect of ultrasonication energy on engineering properties of carbon nanotube reinforced cement pastes[J]. Carbon, 2015,85:212.
[66] 66Al-Rub R K A, Tyson B M, Yazdanbakhsh A , et al. Mechanical properties of nanocomposite cement incorporating surface-treated and untreated carbon nanotubes and carbon nanofibers[J]. Journal of Nanomechanics and Micromechanics, 2011,2(1):1.
[67] HunashyalA, Tippa S V, Quadri S , et al. Experimental investigation on effect of carbon nanotubes and carbon fibres on the behavior of plain cement mortar composite round bars under direct tension[J]. ISRN Nanotechnology, 2011,4(1):29.
[68] Ludvig P, Ladeira L, Calixto J , et al. In-situ synconfproc of multiwall carbon nanotubes on portland cement clinker [C]∥11 thInternational Conference on Advanced Materials. Rio de Janeiro, Brazil, 2009.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[6] 苗青山, 杨璟, 张铁成, 李文鹏, 陕绍云, 苏红莹. 磁性多壁碳纳米管的制备及用于类芬顿反应催化降解橙黄Ⅱ[J]. 材料导报, 2024, 38(9): 22120166-7.
[7] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[8] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[9] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[10] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[11] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[12] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[13] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[14] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[15] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed