Please wait a minute...
CLDB  2017, Vol. 31 Issue (8): 149-155    https://doi.org/10.11896/j.issn.1005-023X.2017.08.030
  计算模拟 |
含稀土H13钢热变形行为及热加工图研究*
赵正阳1,2, 孙明月2, 孙建亮1
1 燕山大学机械工程学院,国家冷轧板带装备及工艺工程技术研究中心, 秦皇岛 066004;
2 中国科学院金属研究所,沈阳材料科学国家联合实验室, 沈阳 110016
Study on Hot Deformation Behavior and Hot Processing Map of H13 Steel Containing Rare Rarth
ZHAO Zhengyang1,2, SUN Mingyue2, SUN Jianliang1
1 National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004;
2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
下载:  全 文 ( PDF ) ( 2183KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用Gleeble-3800热力模拟试验机在900~1 200 ℃、0.01~10 s-1的实验条件下,对含稀土H13进行了热压缩。根据获取的流变应力曲线,建立了含稀土H13钢的高温热变形本构方程及热加工图,并分析了变形后的金相组织。结果表明,在高应变速率下流变应力曲线说明了含稀土H13钢具有断续再结晶行为,稀土的加入显著提升了H13钢的应力值,经计算含稀土H13钢的热激活能为573 kJ/mol,适宜的热加工参数为1 050~1 200 ℃、应变速率0.01~1 s-1。稀土的加入拓宽了H13钢的热加工参数范围。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵正阳
孙明月
孙建亮
关键词:  稀土  H13钢  流变应力  本构方程  热加工图    
Abstract: H13 steel containing rare earth was compressed at the temperature of 900-1 200 ℃ and the strain rate of 0.01-10 s-1 by the Gleeble-3800 thermal-mechanical simulator. The constitutive equation and hot processing map of the rare earth H13 steel at high temperature were established according to the obtained flow stress. Meanwhile, the microstructure of the compressed specimens were analyzed by optical microscope. The flow stress showed that the rare earth H13 steel had a discontinuous dynamic recrystallization behavior at the large strain rate and the stress of the rare earth H13 was elevated obviously. The thermal activation energy of the rare earth H13 steel was 573 kJ/mol. The suitable processing parameter of the rare earth H13 steel was within 1 050-1 200 ℃ and the strain rate was within the range of 0.01-0.1 s-1. Therefore, the addition of rare earth has broadened the scope of the hot processing parameters.
Key words:  rare earth    H13 steel    flow stress    constitutive equation    hot processing map
出版日期:  2017-04-25      发布日期:  2018-05-02
ZTFLH:  TG142.1+4  
基金资助: “十三五”国家重点研发计划(2016YFB0300400);国家自然科学基金重点项目(U1508215);辽宁省百千万人才资助项目(辽百千万立项[2015]12 号)
通讯作者:  孙明月:1980年生,博士,研究员,硕士研究生导师,研究方向为大断面金属热成形数值模拟和工艺设计 E-mail:mysun@imr.ac.cn   
作者简介:  赵正阳:男,1991年生,硕士研究生,研究方向为材料成形与设计 E-mail:zzy0808@foxmail.com
引用本文:    
赵正阳, 孙明月, 孙建亮. 含稀土H13钢热变形行为及热加工图研究*[J]. CLDB, 2017, 31(8): 149-155.
ZHAO Zhengyang, SUN Mingyue, SUN Jianliang. Study on Hot Deformation Behavior and Hot Processing Map of H13 Steel Containing Rare Rarth. Materials Reports, 2017, 31(8): 149-155.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.08.030  或          https://www.mater-rep.com/CN/Y2017/V31/I8/149
1 Liu J Y, Jiang B P, Liu J H. Development and applications of mould steel for hot fabrication[J]. Constr Machinery Equipment,2006,37(6):48(in Chinese).
刘俊英, 蒋伯平, 刘金海. 热作模具钢的发展与应用[J]. 工程机械,2006,37(6):48.
2 Li Y, Zuo X R, Chen Y B, et al. Progress of research in hot wor-king die steel at home and abroad[J]. Special Steel,2010,31(3):20(in Chinese).
李勇, 左秀荣, 陈蕴博, 等. 国内外热作模具钢的研究进展[J].特殊钢,2010,31(3):20.
3 Wu X C, Zuo P P. Development status and trend of hot working die steels at home and aborad[J]. Die Mould Ind,2013,39(10):1(in Chinese).
吴晓春, 左鹏鹏. 国内外热作模具钢发展现状与趋势[J].模具工业,2013,39(10):1.
4 Wang L M, Xu B, Zhu J X, et al. RE function and application prospect in austenitic stainless steel[J]. Chinese Rare Earths,2005,26(5):42(in Chinese).
王龙妹, 徐飙, 朱京希,等. 奥氏体不锈钢中稀土的作用研究及应用前景[J]. 稀土,2005,26(5):42.
5 Pan F, Zhang J, Chen H L, et al. Effects of rare earth metals on steel microstructures[J]. Materials,2016,9(6):417.
6 Zhang Q, Li C R, Yang Y M. Effect of Ce on mechanical properties of H13 steel[J]. Die Mould Manufacture,2015,15(12):85(in Chinese).
张迁, 李长荣, 杨远梅. 稀土元素Ce对H13钢力学性能的影响[J]. 模具制造,2015,15(12):85.
7 Wei Dong. Effect of Ce on microstructure and mechanical properties of H13 steel[D]. Inner Mongolia: Inner Mongolia University of Technology,2015(in Chinese).
魏东. 稀土Ce对H13钢组织和力学性能的影响[D]. 内蒙古: 内蒙古工业大学,2015.
8 Pu S J, Yang H P, Wang H B, et al. Effect of rare earth Ce on high temperature friction and wear property of pack boronized H13 steel[J]. Chinese Mater Res,2015,29(7):481(in Chinese).
濮胜君, 杨浩鹏, 汪宏斌, 等. 稀土对 H13 钢固体渗硼层高温摩擦磨损性能的影响[J]. 材料研究学报,2015,29(7):481.
9 Liang B Q, Zhang C, Xu C. Constitutive equation of hot deformation for H13 steel electroslag ingot[J]. Heat Treatment,2010,25(6):44(in Chinese).
梁宝钱, 张驰, 徐春. H13 钢电渣锭热变形本构模型的研究[J]. 热处理,2010,25(6):44.
10 Wang Huanmin. Research on thermal deformation behavior and microstructure of 4Cr5MoSiV1 alloy[D]. Harbin: Harbin University of Science and Technology,2012(in Chinese).
王焕敏. 4Cr5MoSiV1 钢热变形行为及组织研究[D]. 哈尔滨: 哈尔滨理工大学, 2012
11 Kang F W, Wang H W, Zhang X M, et al. Hot deformation beha-vior and hot processing map of 4Cr5MoSiV1 steel[J]. Mater Sci,2013,3(1):1.
12 Zhang J X, Huang J F, Cui H, et al. High-temperature thermal deformation and microstructure evolution of spray formed H13 tool steel[J]. Hot Working Technol,2014,43(20):1(in Chinese).
张金祥, 黄进峰, 崔华, 等. 喷射成形 H13 钢的高温热变形及组织演变[J]. 热加工工艺,2014,43(20):1.
13 Raj R. Development of a processing map for use in warm-forming and hot-forming processes[J]. Metall Trans A,1981,12(6):1089.
14 Prasad Y V R K, Seshacharyulu T. Modelling of hot deformation for microstructural control[J].Int Mater Rev,1998,43(6):243.
15 周纪华, 管克智. 金属塑性变形阻力[M]. 北京:机械工业出版社,1989:9.
16 Jiang X, Song S H. Enhanced hot ductility of a Cr-Mo low alloy steel by rare earth cerium[J].Mater Sci Eng A,2014,613:171.
17 Momeni A, Dehghani K. Characterization of hot deformation beha-vior of 410 martensitic stainless steel using constitutive equations and processing maps[J]. Mater Sci Eng A,2010,527(21):5467.
18 Jonas J J, Sellars C M, Tegart W J M G. Strength and structure under hot-working conditions[J]. Metall Rev,1969,14(1):1.
19 Chen L, Wang L M, Du X J, et al. Hot deformation behavior of 2205 duplex stainless steel[J]. Acta Metall Sin,2010,46(1):52(in Chinese).
陈雷, 王龙妹, 杜晓建, 等. 2205 双相不锈钢的高温变形行为[J]. 金属学报,2010,46(1):52.
20 Jiang M F, Wang R, Li C L. Interaction of rare earths and micro alloying elements Nb, V and Ti in steel[J]. Chinese Rare Earths,2003,24(5):1(in Chinese).
姜茂发, 王荣, 李春龙. 钢中稀土与铌, 钒, 钛等微合金元素的相互作用[J]. 稀土,2003,24(5):1.
21 Liu H L, Liu C J, Jiang M F. Effects of rare earths on the austenite recrystallization behavior in X80 pipeline steel[J].Adv Mater Res,2010,129-131:542.
22 Chen L,Long H J,Liu X G, et al. Effect of rare earth alloying on creep rupture of economical 21Cr-11Ni-N heat-resistant austenitic steel at 650 ℃[J]. J Rare Earths,2016,34(4):447.
23 Prasad Y V R K,Rao K P,Sasidhara S.Hot working guide: A compendium of processing maps[M].Ohio:ASM International,2015.
24 Ziegler H. Progress in solid mechanics[M]. New York:John Willey and Sons,1963:93.
25 Li J R, Gong C, Chen L, et al. Hot deformation behavior of blades steel 10Cr12Ni3Mo2VN for ultra-supercritical units[J]. Acta Metall Sin,2014,50(9):1063(in Chinese).
李俊儒, 龚臣, 陈列, 等. 10Cr12Ni3Mo2VN 超超临界机组用叶片钢的热变形行为[J].金属学报,2014,50(9):1063.
26 Wen Z, Yi D Q, Wang B, et al. Effect of rare earths on the recrystallization behavior of T91 heat-resistent steel[J]. J University of Science and Technology Beijing,2013,35(8):1000(in Chinese).
文智, 易丹青, 王斌, 等. 稀土对 T91 耐热钢动态再结晶行为影响[J]. 北京科技大学学报,2013,35(8):1000.
[1] 程东海, 张夫庭, 陶玄宇, 余超, 龚浩, 李海涛, 王德, 熊震宇. 稀土元素对钛合金激光焊接头组织及性能的影响[J]. 材料导报, 2025, 39(3): 23060020-5.
[2] 李东翰, 宁舒蕊, 于璐, 廖明义, 张梦霞, 尤诗博, 方庆红. 稀土催化还原体系用于遥爪型低分子量含氟聚合物端基官能化的基础研究[J]. 材料导报, 2025, 39(3): 23100154-9.
[3] 陈楠, 汪宙, 陈爽, 李继文. 稀土Ce对GCr15轴承钢中液析碳化物的影响[J]. 材料导报, 2025, 39(2): 23100091-6.
[4] 赵言, 唐建国, 张勇, 郑许, 赵辉. 应变速率对7065铝合金等温压缩软化机制的影响[J]. 材料导报, 2024, 38(8): 22080187-6.
[5] 甘晓明, 苏玉仙, 应文伟, 王建峰, 刘力, 周晓峰, 温世鹏. 稀土上转换发光材料的设计及在光动力治疗中的应用研究进展[J]. 材料导报, 2024, 38(8): 22080243-12.
[6] 贾宇盟, 史忠祥, 王晶, 李翔. Sm3+掺杂LaOF荧光粉的制备及光学性能[J]. 材料导报, 2024, 38(3): 22100249-7.
[7] 戴宇恒, 满廷慧, 李朋, 徐乐钱, 刘宇, 韦习成. 稀土合金化对高碳高合金工模具钢的影响[J]. 材料导报, 2024, 38(23): 23100036-8.
[8] 周卫新, 娄朝刚. 放电等离子烧结Ce、Yb共掺钇铝石榴石稀土荧光粉及其在光伏电池中的应用[J]. 材料导报, 2024, 38(22): 24040014-5.
[9] 孙文明, 李韶林, 宋克兴, 王强松, 丁宗业, 朱莹莹. 铸态Cu-1.16Ni-0.36Cr合金热变形行为及热加工图[J]. 材料导报, 2024, 38(2): 22040205-8.
[10] 王帆, 王西涛, 徐世光, 何金珊. 基于反向传播神经网络预测7Mo 超级奥氏体不锈钢的热变形行为[J]. 材料导报, 2024, 38(17): 23060023-7.
[11] 鲁飞, 刘树峰, 李慧, 张帅, 赵娜娜, 李飞, 尹高天. 稀土合金扩散烧结钕铁硼磁体研究进展[J]. 材料导报, 2024, 38(16): 23020178-8.
[12] 陈露, 朱琦, 孙旭东. 基于稀土层状氢氧化物的荧光材料研究进展[J]. 材料导报, 2023, 37(3): 22090241-10.
[13] 史国强, 薛冬峰. 电负性评估稀土离子电荷转移跃迁理论及在量子调控发光中的应用[J]. 材料导报, 2023, 37(3): 22110122-5.
[14] 武素丽, 荀文斐, 张淑芬. 稀土氟化物上转换纳米晶尺寸调控的研究进展[J]. 材料导报, 2023, 37(3): 22110116-8.
[15] 卓明鹏, 俞燕君, 丁灵奕, 陈伟凡, 廖良生. 稀土发光配合物及其在有机发光二极管中的应用[J]. 材料导报, 2023, 37(3): 21060045-10.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed