Please wait a minute...
CLDB  2017, Vol. 31 Issue (8): 156-161    https://doi.org/10.11896/j.issn.1005-023X.2017.08.031
  计算模拟 |
基于Dynaform模拟冲压工艺对17%Cr超纯铁素体不锈钢表面
起皱的影响*
张源1, 李静媛1, 方智1, 陈雨来1,2
1 北京科技大学材料科学与工程学院, 北京100083;
2 北京科技大学工程技术研究院, 北京 100083
Influence of Stamping Process by Dynaform Simulation on the Surface Ridging of 17%Cr Ultra-pure Ferritic Stainless Steel
ZHANG Yuan1, LI Jingyuan1, FANG Zhi1, CHEN Yulai1,2
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083;
2 Engineering Research Institute of USTB, University of Science and Technology Beijing, Beijing 100083
下载:  全 文 ( PDF ) ( 2014KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用Dynaform模拟和实验验证相结合的方法研究了冲压工艺(等效应变、减薄率等)对17%Cr超纯铁素体不锈钢起皱的影响。结果表明:17%Cr超纯铁素体不锈钢冲压起皱并不是一开始就产生,而是拉深到一定程度才产生的。在恒速模式(10~40 mm/min)和加速模式下冲压工艺对17%Cr超纯铁素体不锈钢起皱改善作用不大。经Dynaform有限元分析得知,增大压边力会使减薄率显著增大,而对等效应变影响不大;各截面处减薄率和等效应变略有差别,其中减薄率在45°方向最大,0°方向次之,90°方向最小,等效应变的规律则相反。此外,当首次拉深深度在临界起皱拉深深度以下时,采用中间退火工艺可以明显改善拉深件内侧起皱,但对外侧起皱的改善作用有限。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张源
李静媛
方智
陈雨来
关键词:  17%Cr  Dynaform  起皱  恒速模式  等效应变    
Abstract: The influence of equivalent strain and reduction ratio of stamping process on surface ridging of 17%Cr ultra-pure ferrite stainless steel were studied by combination of Dynaform software and experiment vertification. The results showed that stamping ridging of 17% Cr ultra-pure ferrite stainless steel was not generated at the initial stage, it was generated until a certain degree of deep drawing. The improvement ridging effect of 17%Cr ultra-pure ferrite stainless steel was not obvious, under the model of constant speed and acceleration speed for stamping process from 10-40 mm/min. Based on Dynaform finite element analysis, the improvement blank-holder force could enhance reduction ratio of deep drawing, which has no obvious effect on the equivalent strain. The reduction ratio and equivalent strain on cross section area was slightly different, and the value of reduction ratio was ranked in decreasing order: 45°<0°<90°, while the rule is opposite for equivalent strain. In addition, the intermediate annealing process can obviously improve the inside ridging of deep drawing parts when first drawing depth below the critical ridging in deep drawing depth, while the effect was limited for outside ridging.
Key words:  17%Cr    Dynaform    ridging    constant speed mode    equivalent strain
出版日期:  2017-04-25      发布日期:  2018-05-02
ZTFLH:  TG142  
基金资助: 国家高技术研究发展计划(2015AA03A502)
通讯作者:  陈雨来:男,1970年生,副研究员,从事金属材料组织强韧化研究 E-mail:yulaic@ustb.edu.cn   
作者简介:  张源:男,1988年生,博士,从事金属材料组织强韧化研究 E-mail:zy130481@163.com
引用本文:    
张源, 李静媛, 方智, 陈雨来. 基于Dynaform模拟冲压工艺对17%Cr超纯铁素体不锈钢表面
起皱的影响*[J]. CLDB, 2017, 31(8): 156-161.
ZHANG Yuan, LI Jingyuan, FANG Zhi, CHEN Yulai. Influence of Stamping Process by Dynaform Simulation on the Surface Ridging of 17%Cr Ultra-pure Ferritic Stainless Steel. Materials Reports, 2017, 31(8): 156-161.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.08.031  或          https://www.mater-rep.com/CN/Y2017/V31/I8/156
1 Jung I, et al. Influence of the cold rolling and annealing sequence on the ridging behaviour of Ti-stabilized 18% Cr ferritic stainless steel[J].Steel Res Int,2010,81(12):1089.
2 Wu P D, Lloyd D J, Huang Y. Correlation of ridging and texture in ferritic stainless steel sheet[J]. Mater Sci Eng A,2006,427(1-2):241.
3 Wu P D, Jin H, Shi Y, et al. Analysis of ridging in ferritic stainless steel sheet[J]. Mater Sci Eng A,2006,423(1-2):300.
4 Miyamoto H, Xiao T, Uenoya T, et al. Effect of simple shear deformation prior to cold rolling on texture and ridging of 16% Cr ferritic stainless steel sheets[J]. ISIJ Int,2010,50(11):1653.
5 Tsuchiyama T, Hirota R, Fukunaga K, et al. Ridging-free ferritic stainless steel produced through recrystallization of lath martensite[J]. ISIJ Int,2005,45(6):9239.
6 Brrchu M, Yokota T, Satoh S.Analysis of grain colonies in type 430 ferritic stainless steels by electron back scattering diffraction (EBSD) [J]. ISIJ Int,1997,37:872.
7 Shin H J, An J K, Park S, et al. The effect of texture on ridging of ferritic stainless steel [J]. Acta Mater,2003,51(16):4693.
8 Wu P D, Jin H, Shi Y, et al. Analysis of ridging in ferritic stainless steel sheet [J]. Mater Sci Eng A,2006,423(1-2):300.
9 Fang Zhi, Li Jingyuan, Chen Yulai, et al. Research on ridging of 17Cr% ultra-pure ferritic stainless steel after enlongated along va-rious directions[J]. Acta Metall Sin,2016,52(1):33(in Chinese).
方智, 李静媛, 陈雨来,等. 17%Cr超纯铁素体不锈钢不同方向拉伸起皱的研究[J]. 金属学报,2016,52(1):33.
10 Nie Huihui, Chi Chengzhong, Huang Lili, et al. Prediction of limit drawing cocffcient for cylinder based on plastic strain ration [J]. Forging Stamping Technol,2013,38(1): 143(in Chinese).
聂慧慧, 池成忠, 黄莉莉,等. 基于塑性应变比的圆筒形件极限拉深系数预测[J]. 锻压技术,2013, 38(1):143.
11 Huh M Y, Lee J H, Park S H, et al. Effect of through-thickness macro and micro-texture gradients on ridging of 17% Cr ferritic stainless steel sheet[J]. Steel Res Int,2005,76(11):797.
12 Mola J, et al. Ridging control in transformable ferritic stainless steels[J]. Metall Mater Trans A,2012,43(1):228.
13 Mola J, Chae D, De Cooman B C. Influence of texture on ridging and formability of 16% Cr ferritic stainless steel[J]. Solid State Pheno-mena,2010,160:153.
14 Zhang Chi, Liu Zhenyu, Huai Bei, et al. Effects of addition of Nb and Ti on solidification structure andsurface ridging of an ultra purified ferritic stainless steel [J]. Trans Mater Heat Treatment,2011,32(9):23(in Chinese).
张驰, 刘振宇, 淮北,等. Nb和Ti对超纯铁素体不锈钢凝固组织及表面起皱的影响[J]. 材料热处理学报,2011,32(9):23.
15 Nilsson A, et al. Using asymmetrical rolling for increased production and improved material properties [R]. Report of Research Program of the Research Fund for Coal and Steel,2006-2009,2009.
[1] 杨西鹏, 唐浩兴, 王连轩, 李晓广, 刘龙琴, 温彤. 带孔方板对角拉伸的起皱失稳特性测试与分析[J]. 材料导报, 2021, 35(16): 16144-16148.
[2] 林启权, 周行, 董文正, 钦椿凯. CoO和Cr2O3复合掺杂对金属陶瓷的致密化及抗高温氧化性的影响[J]. 材料导报, 2020, 34(6): 6044-6048.
[3] 周斌军, 徐永超, 张志超, 胡蓝. 多层金属板拉深成形研究进展[J]. 材料导报, 2020, 34(23): 23165-23170.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed