Please wait a minute...
CLDB  2017, Vol. 31 Issue (8): 145-148    https://doi.org/10.11896/j.issn.1005-023X.2017.08.029
  计算模拟 |
反复锻压剧烈塑性变形的有限元分析*
郭炜1, 王德1, 付远1, 陆德平1, 刘克明2, 王渠东3, 张利3
1 江西省科学院应用物理研究所, 南昌 330096;
2 南昌工程学院江西省精密驱动与控制重点实验室, 南昌 330099;
3 上海交通大学材料科学与工程学院, 上海 200240
Finite Element Analysis of Repeated Forging Severe Plastic Deformation
GUO Wei1, WANG De1, FU Yuan1, LU Deping1, LIU Keming2, WANG Qudong3, ZHANG Li3
1 Institute of Applied Physics, Jiangxi Academy of Sciences, Nanchang 330096;
2 Jiangxi Key Laboratory for Precision Actuation and Control, Nanchang Institute of Technology, Nanchang 330099;
3 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
下载:  全 文 ( PDF ) ( 1467KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用Deform-3D有限元软件模拟了反复锻压剧烈塑性变形,分析了加工过程中试样的流动、温度、应力以及应变分布。研究发现锻压过程中各部分质点流动的速度大小和方向都不相同。随着起始锻压温度的升高,试样同一部位温升数值逐渐降低。试样内大部分区域在3个方向都承受压应力,有利于细化显微组织的剪切变形始终存在。第一道次锻压完成后试样中应变分布很不均匀,随着加工道次的增加,累积应变及其分布均匀程度都不断提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭炜
王德
付远
陆德平
刘克明
王渠东
张利
关键词:  反复锻压  剧烈塑性变形  模拟  有限元分析    
Abstract: Simulation was performed on repeated forging severe plastic deformation by “Deform-3D” finite element software. The distributions of flow, temperature, stress and strain during processing were analyzed. The results showed that the value and direction of flow velocity for each mass point were different during forging. The value of temperature rise in the same position of sample gradually decreased with the increase of initial forging temperature. Most area of the sample suffered compressive stress in three directions, and shear deformation which was beneficial to refine microstructure always existed. The strain distribution was inhomogeneous in the whole sample after the first pass of forging, and both accumulated strain and strain homogeneity improve as passes number of processing increased.
Key words:  repeated forging    severe plastic deformation    simulation    finite element analysis
出版日期:  2017-04-25      发布日期:  2018-05-02
ZTFLH:  TG306  
基金资助: 国家自然科学基金(51404151;51561010;51461018;51374145);江西省自然科学基金重大项目(20144ACB20013);江西省科学院科研开发专项基金博士项目(2015-YYB-11);江西省科学院协同创新专项普惠制一类项目(2015-XTPH1-11);江西省国际科技合作项目(20151BDH80006);江西省自然科学基金重点项目(20133BAB20008)
作者简介:  郭炜:男,1981年生,博士,副研究员,主要研究方向为金属剧烈塑性变形 E-mail:guowei053@163.com
引用本文:    
郭炜, 王德, 付远, 陆德平, 刘克明, 王渠东, 张利. 反复锻压剧烈塑性变形的有限元分析*[J]. CLDB, 2017, 31(8): 145-148.
GUO Wei, WANG De, FU Yuan, LU Deping, LIU Keming, WANG Qudong, ZHANG Li. Finite Element Analysis of Repeated Forging Severe Plastic Deformation. Materials Reports, 2017, 31(8): 145-148.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.08.029  或          https://www.mater-rep.com/CN/Y2017/V31/I8/145
1 Azushima A, Kopp R, Korhonen A, et al. Severe plastic deformation (SPD) processes for metals[J]. CIRP Ann Manuf Technol,2008,57(2):716.
2 Valiev R Z, Langdon T G. Principles of equal-channel angular pres-sing as a processing tool for grain refinement[J]. Prog Mater Sci,2006,51:881.
3 Zhou Xuyang, Liang Wei, Han Fuyin, et al. Microstructure and creep behavior of ECAPed ZK31+4Si magnesium alloy[J]. Rare Metal Mater Eng,2012,41(5):867(in Chinese).
周旭阳,梁伟,韩富银,等. 等通道转角挤压ZK31+4Si镁合金的显微组织及高温蠕变行为[J]. 稀有金属材料与工程,2012,41(5):867.
4 Guo Wei, Wang Qudong, Ye Bing, et al. Enhanced microstructure homogeneity and mechanical properties of AZ31-Si composite by cyclic closed-die forging[J]. J Alloy Compd,2013,552:409.
5 Fang Xiaoqiang, Li Miaoquan, Lin Yingying. Finite element simulation of equal channel angular pressing of Ti-6Al-4V alloy[J]. J Mater Eng,2007,33(5):102(in Chinese).
方晓强,李淼泉,林莺莺. Ti-6Al-4V钛合金等通道转角挤压的有限元模拟[J].材料工程,2007,33(5):102.
6 Yoon S C, Horita Z, Kim H S. Finite element analysis of plastic deformation behavior during high pressure torsion processing[J]. J Mater Process Technol,2008,201(1-3):32.
7 Inoue T, Yanagida A, Yanagimoto J. Finite element simulation of accumulative roll-bonding process[J]. Mater Lett,2013,106:37.
8 Liu Jun, Guo Xuefeng, Zhang Zhongming, et al. Influences of processing parameters on reciprocating extrusion process of AZ31 magnesium alloy[J]. Mater Eng,2012,40(5):70(in Chinese).
刘君,郭学锋,张忠明,等. 工艺参数对AZ31镁合金往复挤压过程的影响[J]. 材料工程,2012,40(5):70.
9 Guo Wei, Wang Qudong, Ye Bing, et al. Enhanced microstructure homogeneity and mechanical properties of AZ31 magnesium alloy by repetitive upsetting[J]. Mater Sci Eng A,2012,540:115.
10 Liu Jianfeng, Wang Qudong, Zhou Hao, et al. Microstructure and mechanical properties of NZ30K magnesium alloy processed by repe-titive upsetting[J]. J Alloy Compd,2014,589:372.
[1] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[2] 董伟, 刘苏磊, 王旭东, 许富民. 脉冲微孔喷射法的应用研究进展[J]. 材料导报, 2025, 39(3): 24020091-9.
[3] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[4] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[5] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[6] 耿长建, 杨怡斌, 由宝财, 董会苁, 马海坤. 成分相关的单晶Cr-Co-Ni合金形变机制的分子动力学模拟研究[J]. 材料导报, 2025, 39(2): 23120142-5.
[7] 李亚莎, 田泽, 王璐敏, 庞梦昊, 曾跃凯, 赵光辉. 表面接枝KH550 的石墨烯改性聚二甲基硅氧烷热力学性能的分子动力学模拟[J]. 材料导报, 2025, 39(2): 24010155-6.
[8] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[9] 牛克心, 余为, 郝颖. 通孔球壳胞元结构压缩力学性能[J]. 材料导报, 2024, 38(9): 22100287-6.
[10] 胡鸿彪, 徐帅, 章海明, 金朝阳. 等轴晶AZ80镁合金的全场晶体塑性模拟研究[J]. 材料导报, 2024, 38(9): 22110077-6.
[11] 王丽红, 满蛟, 姜一鸣, 刘庚根, 周建平. 外加载荷对热弹性马氏体正-逆相变影响机制的相场模拟研究[J]. 材料导报, 2024, 38(8): 22070156-7.
[12] 金浏, 张晓旺, 郭莉, 吴洁琼, 杜修力. 加载速率对锈蚀钢筋与混凝土粘结性能的影响[J]. 材料导报, 2024, 38(8): 22100011-9.
[13] 彭鹏, 邵宇鹰, 胡海敏, 李振明, 刘伟. 基于碲化铋基柔性热电器件的自取能温度传感器结构设计及性能研究[J]. 材料导报, 2024, 38(6): 22080105-5.
[14] 汪愿, 孙运刚, 符彬, 刘文浩, 宣善勇, 刘鹏. 基于VARI工艺的碳纤维复合材料快速修理飞机铝合金裂纹的研究[J]. 材料导报, 2024, 38(6): 22020135-6.
[15] 方新宇, 徐干成, 魏迎奇, 刘彦泉, 袁伟泽, 周俊鹏. 新型高强钢板在结构抗接触爆炸中的应用[J]. 材料导报, 2024, 38(5): 23060206-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed