Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (7): 137-142    https://doi.org/10.11896/j.issn.1005-023X.2017.07.021
  先进结构复合材料 |
导热绝缘h-BN/MVQ/EVA复合材料的双逾渗效应
杨文彬1,2,张凯3,廖治强1,程金旭1,谢长琼1,吴菊英3,范敬辉3
1 西南科技大学材料科学与工程学院,四川省非金属复合与功能材料重点实验室-省部共建国家重点实验室培育基地, 绵阳 621010;
2 四川大学高分子材料工程国家重点实验室, 成都 610065;
3 中国工程物理研究院总体工程研究所, 绵阳 621010
Double Percolation Effect in Thermally Conductive and Electrically Insulating h-BN/MVQ/EVATernaryComposite*
YANG Wenbin1,2, ZHANG Kai3, LIAO Zhiqiang1, CHENG Jinxu1,XIE Changqiong1, WU Juying3, FAN Jinghui3
1 State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials, School of MaterialsScience and Engineering,Southwest University of Science and Technology, Mianyang 621010;
2 State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065;
3 Institute of System Engineering, China Academy of Engineering Physics, Mianyang 621010
下载:  全 文 ( PDF ) ( 1692KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将h-BN加入到MVQ和EVA混合物中制备导热绝缘h-BN/MVQ/EVA复合材料,SEM结果表明h-BN选择性分布在EVA,与杨氏方程理论一致。h-BN/MVQ/EVA复合材料中的双逾渗效应,有助于力学性能和导热性能的提升。h-BN/MVQ/EVA复合材料的热导率与h-BN含量和MVQ/EVA比值有关。当EVA质量分数为30%时,h-BN/MVQ/EVA复合材料热导率的相对值最大。h-BN/MVQ/EVA复合材料的拉伸强度和断裂伸长率与EVA含量有关,随着EVA和h-BN含量的增加,复合材料的介电常数降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨文彬
张凯
廖治强
程金旭
谢长琼
吴菊英
范敬辉
关键词:  热导率  双逾渗  介电常数  六方氮化硼/MVQ/EVA  绝缘    
Abstract: Abstract|Hexagonal boron nitride (h-BN) was added into polymer blends of methyl-vinyl-silicone rubber (MVQ) and ethy-lene-vinyl-acetate copolymer (EVA) to prepare thermally conductive and electrically insulating composites by melt processing me-thod. According to Young’s equation, the wettability coefficient points out that the dispersion of h-BN in EVA is thermodynamically more favorable than in MVQ. The result of SEM showed that h-BN was selectively located in EVA. There existed double percolation effect in h-BN/MVQ/EVA ternary composites, which resulted in promoting for both mechanical properties and thermal conductivity. The thermal conductivity of h-BN/MVQ/EVA composites were related with h-BN content and EVA/MVQ ratio. When EVA content was 30 wt% in the matrix blend, the relatively increased rate of thermal conductivity of h-BN/MVQ/EVA composites was the highest. The tensile strength and the elongation at break were mainly related with the EVA content in polymer matrix. The increa-sing amount of EVA and h-BN in the composites resulted in a decrease in dielectric constant.
Key words:  thermal conductivity    double percolation    dielectric property    h-BN/MVQ/EVA    electrical insulation
出版日期:  2017-04-10      发布日期:  2018-05-08
ZTFLH:  TB33  
基金资助: *国家自然科学基金委员会-中国工程物理研究院联合基金(U1530102);四川省科技厅应用基础研究项目(2017JY0149);高分子材料工程国家重点实验室开放课题(sklpme2016-4-33);核废物与环境安全国防重点学科实验室开放基金(15kffk08)
作者简介:  杨文彬:男,1971年生,博士,教授,主要研究方向为有机-无机纳米复合材料E-mail:yangwbscu@sina.com
引用本文:    
杨文彬,,张凯,廖治强,程金旭,谢长琼,吴菊英,范敬辉. 导热绝缘h-BN/MVQ/EVA复合材料的双逾渗效应[J]. 《材料导报》期刊社, 2017, 31(7): 137-142.
YANG Wenbin, ZHANG Kai, LIAO Zhiqiang, CHENG Jinxu,XIE Changqiong, WU Juying, FAN Jinghui. Double Percolation Effect in Thermally Conductive and Electrically Insulating h-BN/MVQ/EVATernaryComposite*. Materials Reports, 2017, 31(7): 137-142.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.07.021  或          https://www.mater-rep.com/CN/Y2017/V31/I7/137
1 Aoyagi Y, Leong C K, Chung D D L. Polyol-based phase-change thermal interface materials[J].J Electr on Mater,2006,35(3):416.
2 Zhou W Y, et al. Thermally conductive silicone rubber reinforced with boron nitride particle[J]. Polym Compos,2007,28(1):23.
3 Zhou W Y, Qi S H, et al. Study on insulating thermal conductive BN/HDPE composites[J]. Thermochim Acta,2007,452(1):36.
4 Sim L C, Ramanan S R, Ismail H, et al. Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes[J]. Thermochim Acta,2005,430:155.
5 Gaier J R, Yodervandenberg Y, Berkebile S, et al. The electrical and thermal conductivity of woven pristine and intercalated graphite fiber-polymer composites[J]. Carbon,2003,41(12):2187.
6 Xu Y, Chung D D L, Mroz C. Thermally conducting aluminum nitride polymer-matrix composites[J]. Composites A: Appl Sci Manuf,2001,32(12):1749.
7 Zhou W Y, et al. Thermal properties of heat conductive silicone rubber filled with hybrid fillers[J]. J Compos Mater,2008,42(2):173.
8 Zhou W Y, Qi S H, Tu C C, et al. Novel heat-conductive composite silicone rubber[J]. J Appl Polym Sci,2007, 104(4):2478.
9 Chung D D L. Thermal interface materials[J]. J Mater Eng Perform,2001,10(1):56.
10 Zhou W Y, Qi S H, Tu C C, et al. Effect of the particle size of Al2O3 on the properties of filled heat-conductive silicone rubber[J]. J Appl Polym Sci,2007,104(2):1312.
11 Ng H Y, Lu X, Lau S K. Thermal conductivity, electrical resistivity, mechanical, and rheological properties of thermoplastic compo-sites filled with boron nitride and carbon fiber[J]. Polym Compos,2005,26(1):66.
12 Yuan F Y, Zhang H B, Li X, et al. Synergistic effect of boron nitride flakes and tetrapod-shaped ZnO whiskers on the thermal conductivity of electrically insulating phenol formaldehyde composites[J]. Composits A: Appl Sci Manuf,2013,53:137.
13 Radhakrishnan C K, Kumari P, Sujith A, et al. Dynamic mechanical properties of styrene butadiene rubber and poly (ethylene-co-vinyl acetate) blends[J]. J Polym Res,2008,15(2):161.
14 Mokrini A, Huneault M A, Shi Z Q, et al. Non-fluorinated proton-exchange membranes based on melt extruded SEBS/HDPE blends[J]. J Membr Sci,2008,325(2):749.
15 Phelan P E, Niemann R C. Effective thermal conductivity of a thin, randomly oriented composite material[J]. J Heat Transf,1998,120(4):971.
16 Mallette J G, Márquez A, Manero O, et al. Carbon black filled PET/PMMA blends: Electrical and morphological studies[J]. Polym Eng Sci,2000,40(10):2272.
17 Oss C J V, Good R J, Chaudhury M K. Additive and nonadditive surface tension components and the interpretation of contact angles[J]. Langmuir,1988,4(4):884.
18 Rathod N, et al. The effect of surface energy of boron nitride on polymer processability[J]. Polym Eng Sci,2004,44(8):1543.
19 Xu J, Wong C P. Dielectric behavior of ultrahigh-k carbon black composites for embedded capacitor applications[C]// Proceed- Electron Components Technology Conference.2012.
20 Jeong Y G, et al. Segmental motions and associated dynamic mechanical thermal properties of a series of copolymers based on poly(hexamethylene terephthalate) and poly(1,4-cyclohexylenedimethy-lene terephthalate)[J]. Macromol Res,2006,14(4):416.
21 Kaboorani A, et al. Nano-aluminum oxide as a reinforcing material for thermoplastic adhesives[J]. J Ind Eng Chem,2012,18(3):1076.
22 Nakamura Y, Yamaguchi M, Okubo M, et al. Effects of particle size on mechanical and impact properties of epoxy resin filled with spherical silica[J]. J Appl Polym Sci,1992,45(45):1281.
23 Yang T I, Kofinas P. Dielectricproperties of polymer nanoparticle composites[J]. Polymer, 2007,48(3):791.
[1] 李亚莎, 田泽, 王璐敏, 庞梦昊, 曾跃凯, 赵光辉. 表面接枝KH550 的石墨烯改性聚二甲基硅氧烷热力学性能的分子动力学模拟[J]. 材料导报, 2025, 39(2): 24010155-6.
[2] 范浩博, 豆书亮, 李垚. 二氧化钒智能热控涂层光学结构原理及研究进展[J]. 材料导报, 2025, 39(1): 24100229-10.
[3] 谭海星, 林剑荣, 黄培源, 彭憬怡, 刘思, 陈建文, 徐华, 肖鹏. 柔性氧化物薄膜晶体管栅绝缘层的研究进展[J]. 材料导报, 2024, 38(23): 23050204-9.
[4] 陈菊, 周涵. 基于近零介电常数材料的热辐射调控研究进展[J]. 材料导报, 2024, 38(22): 23100001-7.
[5] 赵永生, 阎峰云, 刘雪. B掺杂对金刚石热导率的影响[J]. 材料导报, 2024, 38(20): 23080238-8.
[6] 王媛媛, 张璐, 程洗洗, 钱麒, 徐欢, 徐华, 杨雪舟, 杨波波, 邹军. 立方砷化硼晶体生长、性能及应用研究进展[J]. 材料导报, 2024, 38(17): 22110207-10.
[7] 闾川阳, 李科桥, 盛剑翔, 顾小龙, 石磊, 杨建国, 贺艳明. AlN/Cu钎焊接头残余应力的数值模拟研究[J]. 材料导报, 2024, 38(16): 23030229-9.
[8] 王梓霄, 熊良涛, 李浩源. 共价有机框架材料的热导和热电应用研究进展[J]. 材料导报, 2024, 38(12): 24040129-8.
[9] 黄威, 王轩, 李永清, 王源升, 王博, 王玉江, 魏世丞. 微波吸收材料电磁特性响应规律及影响因素研究进展[J]. 材料导报, 2023, 37(7): 21090051-11.
[10] 张化福, 周爱萍, 吴志明, 蒋亚东. 二氧化钒金属-绝缘相变的回线宽度及其调控研究进展[J]. 材料导报, 2023, 37(6): 21050100-10.
[11] 刘小村, 潘明艳. Ⅰ掺杂提高铅固溶立方相AgBiSe2热电性能[J]. 材料导报, 2023, 37(5): 21060082-5.
[12] 王兰喜, 何延春, 王虎, 吴春华, 李林. 石墨烯导热纸研究进展[J]. 材料导报, 2023, 37(3): 20110183-9.
[13] 刘电超, 金国, 井勇智, 崔秀芳, 房永超, 陈卓, 王薪贺. 稀土氧化物掺杂对YSZ热障涂层热物理性能影响的研究进展[J]. 材料导报, 2023, 37(24): 22040242-6.
[14] 陈国华, 黄冰虹. 低温共烧低介电常数微波介质陶瓷的研究进展[J]. 材料导报, 2023, 37(20): 22050128-16.
[15] 何晓龙, 陈志谦, 李璐, 石一非. 基于聚合物-陶瓷复合材料的异形龙伯透镜天线的研究及制造[J]. 材料导报, 2023, 37(12): 21100228-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed