Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (7): 129-136    https://doi.org/10.11896/j.issn.1005-023X.2017.07.020
  先进结构复合材料 |
碳纤维表面改性及其对碳纤维/树脂界面影响的研究进展
杨平军1,袁剑民1,何莉萍2
1 湖南大学材料科学与工程学院,长沙410082;
2 湖南大学机械与运载工程学院,长沙 410082
Carbon Fibers Surface Modification and Effects on the Interfaces Between Fibers and Resin Matrices: A Review
YANG Pingjun1, YUAN Jianmin1, HE Liping2
1 College of Materials Science and Engineering, Hunan University, Changsha 410082;
2 Institute of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082
下载:  全 文 ( PDF ) ( 1383KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳纤维具有优异的性能,常用于树脂基体的增强。然而,碳纤维表面具有疏水性和化学惰性,导致其与树脂基体间的界面粘结性较差,因此,有必要对碳纤维进行表面改性。综述了近几年国内外碳纤维表面改性方法的研究进展,以及这些改性方法对碳纤维与树脂基体界面性能的影响,并将这些表面改性方法分为湿化学法改性、干法改性、纳米材料改性三大类,具体的改性方法包括上浆剂改性、等离子体改性、纳米粒子改性等,并对纳米材料改性作了较详细的介绍,希望能为碳纤维表面改性提供一些帮助。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨平军
袁剑民
何莉萍
关键词:  碳纤维  表面改性  界面  纳米材料改性    
Abstract: Carbon fibers (CF) are used as a reinforcement of polymer composites due to excellent performance. However, carbon fibers are hydrophobic and chemical inertness which cause poor interfaces between CF and resin matrices. Thus, it is necessary to carry out the technology which is used to modify the carbon fibers surface. This paper reviews the research development of carbon fibers surface modification at home and abroad in recent years, and these methods play an important role in carbon fibers and resin matrices. Carbon fibers surface modification are classified into chemical modification, dry modification, nanomaterials modification. Specific modification methods are sizing modification, plasma modification, nanoparticles modification and so forth. At the same time, nanomaterials modification is introduced in detail. The article is expected to provide some valuable help for the modification of CF.
Key words:  carbon fibers    surface modification    interface    nanomaterials modification
出版日期:  2017-04-10      发布日期:  2018-05-08
ZTFLH:  X511  
通讯作者:  袁剑民,男,1978年生,博士,主要从事碳纤维及其复合材料研究E-mail:pangyuan2916@126.com   
作者简介:  杨平军:男,1991年生,硕士研究生,主要从事碳纤维及其复合材料研究
引用本文:    
杨平军,袁剑民,何莉萍. 碳纤维表面改性及其对碳纤维/树脂界面影响的研究进展[J]. 《材料导报》期刊社, 2017, 31(7): 129-136.
YANG Pingjun, YUAN Jianmin, HE Liping. Carbon Fibers Surface Modification and Effects on the Interfaces Between Fibers and Resin Matrices: A Review. Materials Reports, 2017, 31(7): 129-136.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.07.020  或          https://www.mater-rep.com/CN/Y2017/V31/I7/129
1 贺福.碳纤维及其应用技术[M].北京:化学工业出版社,2004.
2 Chang S. Review carbon fibers for composites [J]. Mater Sci,2000,35(6):1303.
3 Dvir H, Jopp J, Gottlieb, et al. Estimation of polymer surface interfacial interaction strength by a contact AFM technique[J]. Colloid Interface Sci,2006,304(1):58.
4 Paiva M C, Bernardo C A, Nardin M, et al. Mechanical surface and interfacial characterization of pitch and PAN based carbon fibers[J]. Carbon,2000,38(9):1323.
5 Park S J, Kim B J. Roles of acidic functional groups of carbon fiber surfaces enchancing interfacial adhesion behavior [J]. Mater Sci Eng A,2005,408:269.
6 Drzal LT, Rich M J, Lioyd P F, et al. Adhesion of graphite fibers to epoxy matrices[J]. Role Fiber Surface Treatment,1983, 16(1):1.
7 Li Y, Wen Y F, Yang Y G, et al. Effect of sizing agent containing epoxy resin on properties of PAN-based carbon fiber [J]. Synthetic Fiber Ind,2009,32(2):1(in Chinese).
李阳,温月芳,杨永岗,等.环氧树脂上浆剂对PAN基碳纤维性能的影响[J]. 合成纤维工业,2009,32(2):1.
8 Alain, Laurence R, Rene B J, et al. Liquid phase oxidation kinetics of an ex-cellulose activated carbon cloth by NaClO[J]. Carbon,2012,50(6):2226.
9 Yu J L, Meng L H, Fand P, et al. The oxidation of carbon fibers through K2S2O8/AgNO3 system that preserves fibers tensile strength[J]. Composites Part B,2014,60:261.
10 Zhang G, Sun S H, Yang D Q, et al. The surface an alytical characterization of carbon fibers functionalized by H2SO4/HNO3 treatment [J]. Carbon,2008,46(2):196.
11 Ma Q S, Gu Y Z, Li M, et al. Effects of surface treating methods of high strength carbon fibers on interfacial properties of epoxy resin matrix composite[J]. Appl Surf Sci,2016,379:199.
12 Qian X, Wang X F, Yang Q O, et al. Effect of ammonium salt solutions on the surface properties of carbon fibers in eletrochemical anodic oxidation[J]. Appl Surf Sci,2012,259:238.
13 He W H, Wang J L, Li K X, et al. Mixed resin and carbon fibres surface treatment for preparation of carbon fibres composites with good interfacial bonding strength[J]. Mater Des,2010,31:4631.
14 Saba J, Magga Y, He D, et al. Continuous electrodeposition of polypyrrole on carbon nanotube-carbon fiber hybrds as protective treatment against nanotube dispersion [J]. Carbon,2013,51:20.
15 Deng C, Jiang J J, Liu F, et al. Effects of electrophoretially depo- sited grapheme oxide coatings on interfacial properties of carbon fiber composite[J]. J Mater Sci,2015,50:5886.
16 Joi J O, Wood G A. Control of the surface structure of graphite fibers for improved composite interfacial properties[J]. Surf Modification Technol,1998,15(3) 405.
17 Hung K B, Li J, Fan Q, et al. The enhancement of carbon fiber modified with electropolymer coating to the mechanical properties of epoxy resin composites[J]. Composites Part A,2008,39(7):1133.
18 Zhang F S, Wu Y, et al. Diacetone acrylamide in electric polymerization on the surface of the carbon fiber research[J]. J Beijing University of Aeronautics and Astronautics,1998,24(4):129(in Chinese).
张福盛, 吴瑜, 庄严, 等.双丙酮丙烯酰胺在碳纤维表面的电聚合研究[J].北京航空航天大学学报,1998,24(4):129.
19 Inoue K, Minami H. Sizing agents for carbon fibers [J]. Carbon,1990,28(5):1.
20 Ezjile H B, Sharpd, Villalba M M, et al. Laser anodised carbon fiber: Coupled activation and pattering of sensor substrates [J]. J Phys Chem Solids,2008,69(11):2932.
21 Ajit S, Chris B, Saunder S, Vince J L, et al. Electron proccessing of carbon fiber reinforced advanced composites: A status report [J]. Am Chem Soc,1996,6(20):15.
22 Xu H B, et al. A high efficient method for introducing reactive amines onto carbon fiber surfaces using hexachlorocyclophosphazene as a new coupling agent[J]. Appl Surf Sci,2014,320(30):43.
23 Zhang R L, Liu Y, et al. Effect of particle size and distribution of the sizing agent on the carbon fibers surface and interfacial on shear strength of its composites[J]. Appl Surf Sci,2013,287:423.
24 Liu Y, Zhang X, Song C C, et al. An effective surface modification of carbon fiber for improving the interfacial adhesion of polypropropylene composites [J]. Mater Des,2015,88:810.
25 Peng J, Zhang J. Application of plasma technologies in carbon fiber-reinforced polymer composites [J].Mater Rev, 1999, 13(2):48 (in Chinese).
彭静, 张军.等离子体技术在CF/树脂基复合材料中的应用[J].材料导报, 1999,13(2):48.
26 Vautard F, Fioux P. Use of plasma polymerizationt to improve adhesion strength in carbon fiber composites cured by electron beam[J]. Am Chem Soc,2013(6):1662.
27 Sharma M, Bijwe J, Edith M, et al. Strengthening of CF/PEEK interface to improve the tribological performance in low amplitude oscillating wear [J]. Wear,2013,301:735.
28 Lee H, Ohsawa I, Takahashj J, et al. Effect plasma surface treatment of recycled carbon fiber on carbon reinforced plastics (CFRP) interfacial properties[J]. Appl Surf Sci,2015,328:241.
29 Liu Z, Tang C, et al. Modification of carbon fiber by air plasma and its adhesion with BMI resin[J]. RSC Adv,2014,4(51):26881.
30 Deng H, Yang J H. Development and application of polymer radiation grafting[J]. Radiation Res Radiation Technol,1998,16(2):65(in Chinese).
邓海, 杨济活.高聚物辐射接枝的发展与应用[J]. 辐射研究与辐射工艺报,1998,16(2):65.
31 Dilsiz N, Erincn K, et al. Surface energy and mechanical properties of plasma modified carbon fibers [J]. Carbon,1995,33(6):853 .
32 Zhao F, et al. Uniform modification of carbon fibers in high density fabric by γ ray irradiation grafting [J]. Mater Lett,2011,65:3351.
33 Evoram C, Araujo J R, Ferrreira H M, et al. Localized surface grafting reactions on carbon nanofibers induced by gamma and e-beam irradiation [J].Appl Surf Sci,2015,335:78.
34 Li J Q, Huang Y D, Fu S Y, et al. Study on the surface perfor- mance of carbon fibers irradiated by gray under different irradiation dose [J]. Appl Surf Sci,2010,256:2000.
35 Wang R, Yang H, Wang J L, et al. The electromagnetic interfe- rence shielding of silicone rubber filled with nickel coated carbon fiber[J]. Polym Test,2014,38:53.
36 Kim B J, Choiw K, Umm K, et al. Effects of nickel coating thickness on electric properties of nickel/carbon hybrid fibers [J].Surf Coat Technol,2011,205:3416.
37 Tsai J S. Tension effects on the properties of oxidized polyacrylonitrile and carbon fibers during continuous oxidation [J].Polym Eng Sci,1995,35(16):1313.
38 Fuk G, Uedas S, Nagumo M, et al. Air qxidation and anodization of pitch based carbon fibers [J]. Carbon,1991,37(7):1081.
39 He F, Wang R E. Gas phase oxidation of carbon fiber surface treatment [J]. J Compos Mater,1988, 5(1):58(in Chinese).
贺福, 王润娥.用气相氧化法对碳纤维进行表面处理[J].复合材料学报, 1988, 5(1):58.
40 Gosselink R W, Rvan D B, Xia W, et al. Gas phase oxidation as a tool to introduce oxygen containing grou ps on metal loaded carbon nanofibers[J]. Carbon,2012,50:4424.
41 Galanu, Lin Y, Gregory J, et al. Effect of Zn-ZnO nanowire morphology on the interfacial strength of nanowire coated carbon fibers[J]. Compos Sci Technol,2011,71:946.
42 Lu J H, Guo K B, et al. In situ synthesis silicon nitride nanowires in carbon fiber felts and their effect on the mechanical properties of carbon/carbon composites [J].Mater Des,2016,99:389.
43 Shah A, Ding A, Wang Y H, et al. Enhanced microwave absorption by arrayed carbon fibers and gradient dispersion of Fe nanoparticles in epoxy resin composites [J]. Carbon,2016,96:987.
44 Wang S K, Haldane D, Gallagher P, et al.Heterogeneously structured conductive carbon fiber composites by using multi-scale silver particles[J]. Composites Part B,2014,61:172.
45 Kim K J, Kim J, Yu W R, et al. Improved tensile strength of carbon fibers undergoing catalytic growth of carbon nanotubes on their surface[J]. Carbon,2013,54:258.
46 Fan W X, Wang Y X, Wang C G, et al. High efficient preparation of carbon nanotube grafted carbon fibers with the improved tensile strength [J]. Appl Surf Sci,2016,363:539.
47 Li Y X, Li Y B, et al. Tuning the interfacial property of hierarchical composites by changing the grafting density of carbon nanotube using 1,3-propodiami[J]. Compos Sci Technol,2013,85:36.
48 Kamae T, Drzal L T. Fiber/epoxy composites property enhancement through incorporation of carbon nanotubes at the fiber matrix interphase PartⅠ: The development of carbon nanotube coated carbon fibers and the evaluation of their adhesion [J]. Composites Part A,2012,43:1569.
49 Wang C, Li Y B, Tong L Y, et al. The role of grafting and surface wettability in interfacial of carbon nanotube/carbon hierarchical composites [J]. Carbon,2014,69:239.
50 Peng L, Feng Y Y, Zhang P, et al. Increasing the interfacial strength in carbon fiber/epoxy composites by controlling the orientation and length of carbon nanotube grown on the fibers [J]. Carbon,2011,49:4665.
51 Zhao F, Huang Y D, Liu L, et al. Formation of a carbon fiber/polyhedral oligomericssilsesquioxae/carbon nanotube hybrid reinforcement and its effect on the interfacial properties of carbon fiber/epoxy composites[J]. Carbon,2011, 49:2624.
52 Li F, Liu Y, Qu C B, et al. Enhanced mechanical properties of short carbon fiber reinforced polyether sulfon composites by graphene oxide coating [J]. Polymer,2015,59:155.
53 Jiang S, Li Q F, Wang J W, et al. Multiscale graphene oxide-carbon fiber reinforcements for advanced polyurethane composites[J]. Composites Part A,2016,87:1.
54 Ashori A, Menbari S, Bahrami R, et al. Mechanical and thermomechanica properties of short carbon fiber reinforced polypropylene composites using exfoiated grapheme nanoplatelets coating [J]. J Ind Eng Chem,2016,38:37.
55 Chen L, Jin H, Xu Z W, et al. A design of gradient interphase reinforced by silanized graphene oxide and its effect on carbon fiber/epoxy interface[J]. Mater Chem Phys,2014,145:186.
[1] 温强, 李向成, 花银群, 关庆丰, 蔡杰. 强流脉冲电子束表面改性技术及其在热障涂层改性中的研究进展[J]. 材料导报, 2025, 39(3): 23090070-11.
[2] 潘元帅, 王刚, 冯海霞, 柳军, 袁波, 田朋丹, 韩艺辉. 镍基高温合金与耐火材料界面特性研究[J]. 材料导报, 2025, 39(3): 22100206-7.
[3] 屈沅治, 张蝶, 兰雅婧, 任晗, 刘阔, 黄宏军, 梁本亮, 颜鲁婷. 水基钻井液用多元协同纳米润滑剂的研究进展[J]. 材料导报, 2025, 39(2): 23090016-6.
[4] 裴海华, 赵建伟, 郑家桢, 张贵才, 张菅, 蒋平. 改性纳米锂皂石强化高温泡沫调驱性能研究[J]. 材料导报, 2025, 39(2): 22110070-5.
[5] 崔潮, 李渊, 党颖泽, 王岚, 彭晖. 碱-矿渣-偏高岭土基地聚物与骨料的界面粘结机理[J]. 材料导报, 2025, 39(1): 23110101-8.
[6] 吴迪, 林方敏, 张洪龙, 宋孟, 杨永, 殷兆良, 章小峰. 合金元素对bcc-Cu/NiAl共析出影响的第一性原理研究[J]. 材料导报, 2024, 38(9): 22070183-6.
[7] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[8] 赵涔凯, 邹杰鑫, 王旻, 李思明, 赵微, 张时林, 滕珏瑾, 王艳皎, 吴明铂, 胡涵, 李亚伟. 基于阴离子交换膜电解水的离聚物研究进展[J]. 材料导报, 2024, 38(8): 23080132-11.
[9] 魏一帆, 夏会聪, 张佳楠. 钠离子存储器件中界面效应作用机制研究[J]. 材料导报, 2024, 38(8): 23120085-9.
[10] 杜一, 顾邦凯, 陈曦, 李夏冰, 卢豪. 埋底界面修饰对钙钛矿太阳能电池的影响[J]. 材料导报, 2024, 38(7): 22080111-10.
[11] 陈京健, 徐能能, 芦拓, 魏群山. 锌阳极氮掺杂多孔碳表面功能层设计及可逆性研究[J]. 材料导报, 2024, 38(6): 23040217-6.
[12] 张霞, 吴瑛, 袁牧锋, 王春栋. MOFs衍生物在尿素氧化中的研究进展[J]. 材料导报, 2024, 38(6): 23020193-10.
[13] 长俊钢, 陈玉, 何静, 梁奇银, 雷晓波, 蔡芳共, 张勤勇. 热电器件界面性能的研究现状[J]. 材料导报, 2024, 38(6): 22080238-13.
[14] 姚志华, 张建华, 辛建平, 穆锐. 风积砂-黄土混合料与钢界面的环形剪切力学特性[J]. 材料导报, 2024, 38(5): 23070012-8.
[15] 朱本清, 余红发, 巩旭, 吴成友, 麻海燕. 除冰盐冻融作用下混凝土界面粘结强度与界面过渡区细观力学性能的关系[J]. 材料导报, 2024, 38(5): 22070190-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed