Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (4): 17-20    https://doi.org/10.11896/j.issn.1005-023X.2017.04.005
  材料研究 |
烧结钕铁硼磁体溅射渗镝工艺与磁性能研究*
李家节1,2, 郭诚君1, 周头军1, 饶先发1, 周慧杰3, 杨斌1,2
1 江西理工大学工程研究院, 赣州 341000;
2 江西理工大学材料科学与工程学院, 赣州 341000;
3 虔东稀土集团股份有限公司, 赣州 341000
Magnetic Properties and Dysprosium Infiltration of Sintered Nd-Fe-B
Magnets by Magnetron Sputtering
LI Jiajie1,2, GUO Chengjun1, ZHOU Toujun1, RAO Xianfa1, ZHOU Huijie3, YANG Bin1,2
1 Institute of Engineering and Research, Jiangxi University of Science and Technology, Ganzhou 341000;
2 School of Material Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000;
3 Ganzhou Qiandong Rare Earth Group Co., Ltd, Ganzhou 341000
下载:  全 文 ( PDF ) ( 1687KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用直流磁控溅射的方法,在烧结Nd-Fe-B磁体表面制备了Dy薄膜,对比研究了N35烧结态与回火态磁体晶界扩散后组织形貌与性能的变化。N35烧结态与回火态磁体经溅射渗Dy处理后,在剩磁仅降低0.009 T和0.03 T的情况下,矫顽力大幅度提高,分别提高了708.44 kA/m和665.46 kA/m,渗Dy处理后磁体中的Dy元素平均质量分数增加不超过0.4%。SEM和EDS能谱的分析结果表明,晶界组织形貌的改善和(Nd,Dy)2Fe14B外延层的形成是矫顽力提升的主要原因。EPMA元素面分布结果显示,Dy主要富集在富Nd相处,三叉型富Nd相处Dy含量最高,而Dy没有扩散到主相晶粒内部,不会导致剩磁大幅度降低,从而有效提高了磁体的综合磁性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李家节
郭诚君
周头军
饶先发
周慧杰
杨斌
关键词:  磁控溅射  晶界扩散  Dy元素  烧结钕铁硼    
Abstract: The Dy films on the surface of sintered Nd-Fe-B magnets were prepared by DC magnetron sputtering. The microstructure and properties of N35 as-sintered state and tempered state magnets were compared after grain boundary diffusion. The coercivities of as-sintered and tempered state magnets increased drastically by 708.44 kA/m and 665.46 kA/m in the case of remanences decrease of only 0.009 T and 0.03 T respectively after sputtering Dy infiltration treatment. The increment of Dy contents in magnets did not exceed 0.4% (the average mass fraction) after Dy infiltration process. The improvement of coercivity is attributed to the formation of grain boundary microstructure and (Nd,Dy)2Fe14B epitaxial layer via SEM and EDS analysis. The EPMA elemental surface distribution results show that Dy mainly enriches in Nd-rich phases. The concentration of Dy is the highest especially in the trigeminal type Nd-rich phases while Dy elements have not spread into the main phases. It will not significantly reduce remanence of the magnets so that the integrated magnetic properties are improved effectively.
Key words:  magnetron sputtering    grain boundary diffusion    dysprosium    sintered Nd-Fe-B
出版日期:  2017-02-25      发布日期:  2018-05-02
ZTFLH:  TM273  
基金资助: *国家自然科学基金(51561009);江西省高校科技落地计划(KJLD14043);江西省青年科学基金计划(20151BAB216005);江西省教育厅研究项目(GJJ14448)
通讯作者:  杨斌:通讯作者,男,1965年生,博士,教授,主要研究方向为有色金属材料 E-mail:yangbin65@126.com   
作者简介:  李家节:男,1981年生,博士,讲师,主要研究方向为稀土永磁材料 E-mail:lifest@163.com
引用本文:    
李家节, 郭诚君, 周头军, 饶先发, 周慧杰, 杨斌. 烧结钕铁硼磁体溅射渗镝工艺与磁性能研究*[J]. 《材料导报》期刊社, 2017, 31(4): 17-20.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.04.005  或          https://www.mater-rep.com/CN/Y2017/V31/I4/17
1 Matsuura Y. Recent development of Nd-Fe-B sintered magnets and their applications [J]. J Magn Magn Mater,2006,303(2):344.
2 Hirosawa S, et al. Magnetization and magnetic anisotropy of R2Fe14B measured on single crystals [J]. J Appl Phys,1986,59(3):873.
3 Nakamura H, et al. Magnetic properties of extremely small Nd-Fe-B sintered magnets [J]. IEEE Trans Magn,2005,41(10):3844.
4 Hirota K, Nakamura H, Minowa T, et al. Coercivity enhancement by the grain boundary diffusion process to Nd-Fe-B sintered magnets [J]. IEEE Trans Magn,2006,42(10):2909.
5 Watanabe N, Itakura M, Kuwano N, et al. Microstructure analysis of sintered Nd-Fe-B magnets improved by Tb-vapor sorption [J]. Mater Trans,2007,5(48):915.
6 Li D S, et al. Coercivity enhancement of Nd-Fe-B sintered magnets by grain boundary modification via reduction-diffusion process [J]. IOP Conference Series: Mater Sci Eng,2009,1:012020.
7 Sepehri-Amin H, Ohkubo T, Hono K. The mechanism of coercivity enhancement by the grain boundary diffusion process of Nd-Fe-B sintered magnets [J]. Acta Mater,2013,61(6):1982.
8 Cao X J, Chen L, Guo S, et al. Coercivity enhancement of sintered Nd-Fe-B magnets by efficiently diffusing DyF3 based on electrophoretic deposition [J]. J Alloys Compd,2015,631:315.
9 Seelam U M R, Ohkubo T, Abe T, et al. Faceted shell structure in grain boundary diffusion-processed sintered Nd-Fe-B magnets [J]. J Alloys Compd,2014,617:884.
10 Nakamura H, Hirota K, Ohashi T, et al. Coercivity distributions in Nd-Fe-B sintered magnets produced by the grain boundary diffusion process [J]. J Phys D: Appl Phys,2011,44(6):064003.
11 Tang W, Dennis K W, Kramer M J, et al. Studies of sintered MRE-Fe-B magnets by DyF3 addition or diffusion treatment (MRE=Nd+Y+Dy)[J]. J Appl Phys,2012,111(7):7A736.
12 Ji W X, Liu W Q, Yue M,et al. Coercivity enhancement of recycled Nd-Fe-B sintered magnets by grain boundary diffusion with DyH3 nano-particles [J]. Physica B,2015,3(13):1.
13 Li J, Zhou L, et al. Investigation of grain boundary diffusion on Nd-Fe-B sintered magnet with high Dy content [J]. Powder Metall Ind,2014,24(5):33(in Chinese).
李建, 周磊, 等. 高Dy含量烧结Nd-Fe-B的晶界扩散处理研究 [J]. 粉末冶金工业,2014,24(5):33.
14 Li J, Wang L, Zhou L,et al. Grain boundary diffusion of dysprosium Nd-Fe-B sintered magnet with electrophoretic deposition [J]. J Chin Soc Rare Earths,2013,31(3):275(in Chinese).
李建, 王琳, 周磊,等. 钕铁硼电泳法晶界扩散渗镝研究 [J]. 中国稀土学报,2013,31(3):275.
15 Soderžnik M, Rožman K Ž, Kobe S, et al. The grain-boundary diffusion process in Nd-Fe-B sintered magnets based on the electrophoretic deposition of DyF3 [J]. Intermetallics,2012,23:158.
16 Li D S, Suzuki S, Kawasaki T, et al. Grain interface modification and magnetic properties of Nd-Fe-B sintered magnets[J]. Jpn J Appl Phys,2008,47(10):7876.
17 Sun B Y, Ba D C, Fang Y, et al. A study of vacuum solid diffusion for dyal alloy thin film on sintered NdFeB magnet [J]. Chin Rare Earths,2010,31(4):17(in Chinese).
孙宝玉, 巴德纯, 房也, 等. DyAl合金薄膜在NdFeB基体上真空热扩渗行为的研究 [J]. 稀土,2010,31(4):17.
18 Gong Q, Zhang F L, Deng X X, et al. A study of grain boundary diffusion with Dy/DyFe for sintered NdFeB magnet [J]. Chin Rare Earths,2015,36(4):120(in Chinese).
宫清, 张法亮, 邓小霞,等. 烧结钕铁硼磁体晶界扩散Dy/DyFe工艺研究 [J]. 稀土,2015,36(4):120.
19 Bao X Q, et al. Microstructure and magnetic properties of sintered Nd-Fe-B magnets by Dy diffusion treatment [J]. J University of Science and Technology Beijing,2014,36(9):1215(in Chinese).
包小倩, 等. 镝扩渗对烧结钕铁硼磁体组织结构与磁性能的影响 [J]. 北京科技大学学报,2014,36(9):1215.
20 Li J, Zhou L, Liu T, et al. Microstructure analysis of NdFeB sintered magnet with Dy grain boundary diffusion [J]. Chin Rare Earths,2014,35(6):45(in Chinese).
李建, 周磊, 刘涛,等. 烧结钕铁硼晶界扩散Dy微观组织分析 [J]. 稀土,2014,35(6):45.
21 周寿增,董清飞,高学绪. 烧结钕铁硼稀土永磁材料与技术[M]. 北京: 冶金工业出版社,2011.
[1] 李迎春, 杨更生, 杨明宣, 邱明, 范恒华. 调制周期对磁控溅射Cr/类石墨碳多层膜腐蚀-磨损性能的影响[J]. 材料导报, 2024, 38(21): 23070129-7.
[2] 乔礼红, 游才印, 付花睿, 田娜, 白洋, 刘小鱼. 不同界面次序CoFeMnSi多层膜的磁各向异性[J]. 材料导报, 2024, 38(18): 23040015-6.
[3] 鲁飞, 刘树峰, 李慧, 张帅, 赵娜娜, 李飞, 尹高天. 稀土合金扩散烧结钕铁硼磁体研究进展[J]. 材料导报, 2024, 38(16): 23020178-8.
[4] 程培雪, 马迅, 刘平, 王静静, 马凤仓, 张柯, 陈小红, 刘剑楠, 李伟. 磁控溅射纳米银含量对钛种植体抗菌性的影响[J]. 材料导报, 2023, 37(16): 22030032-6.
[5] 马新国, 程正旺, 王妹, 贺晶, 邹维, 邓水全. 适用声波谐振器的磁控溅射制备AlN薄膜优化技术[J]. 材料导报, 2023, 37(11): 21080275-7.
[6] 刘伟, 贾琨, 谷建宇, 马晨, 魏学红. Ag/石墨烯复合薄膜的制备及其导热和电磁屏蔽性能研究[J]. 材料导报, 2022, 36(9): 21020136-5.
[7] 李彤, 赵卓, 武俊生, 方方, 周艳文. 粉末靶磁控溅射ZnO/Cu/ZnO的制备及表征[J]. 材料导报, 2022, 36(6): 20120259-4.
[8] 王付胜, 王汉森, 何鹏, 胡隆伟, 陈亚军. 磁控溅射和电镀方法制备纯银镀层耐蚀性能分析[J]. 材料导报, 2022, 36(6): 20120254-6.
[9] 张亚南, 周子超, 张豪, 肖宇琦, 邓娜, 付彬芸, 多树旺. 工艺参数对等离子增强磁控溅射TiAlN涂层微观结构及性能的影响[J]. 材料导报, 2022, 36(24): 21010184-6.
[10] 刘炘城, 邵海成, 乔冠军, 陆浩杰, 于刘旭, 张相召, 刘桂武. 氧化铝陶瓷表面连续导电金膜的制备工艺及性能[J]. 材料导报, 2021, 35(8): 8076-8081.
[11] 郦其乐, 杨勇, 魏玉全, 刘盟, 周洪军, 霍同林, 黄政仁. 不同B/C摩尔比碳化硼薄膜的光学性能[J]. 材料导报, 2021, 35(2): 2006-2011.
[12] 余登德, 张仁耀, 沈月, 闻明, 刘洪喜1,. 混合表面纳米化制备钛表面Ru/Ti薄膜的结构及耐蚀性能[J]. 材料导报, 2020, 34(24): 24086-24091.
[13] 吴珊妮, 赵远, 姜宏, 文峰, 熊春荣. 具有优良隔热和力学性能的低热导率W/Al2O3纳米多层功能膜的构建[J]. 材料导报, 2020, 34(2): 2023-2028.
[14] 汪国军, 白煜, 胡少杰, 张敏, 王书蓓, 万飞. 退火工艺对磁控溅射生长的Pt薄膜微观结构及电性能的影响[J]. 材料导报, 2019, 33(Z2): 56-60.
[15] 赵笑昆, 李博研, 张增光. 磁控溅射沉积制备Al掺杂ZnO薄膜的棒状晶粒生长[J]. 材料导报, 2019, 33(z1): 112-115.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed