Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (24): 10-14    https://doi.org/10.11896/j.issn.1005-023X.2017.024.003
  第一届先进胶凝材料研究与应用学术会议 |
氧化石墨烯调控水泥基材料形成大规模规整结构及其性能表征
吕生华1,2,罗潇倩1,张 佳1,高党国3,孙 立1,胡浩岩1
1 陕西科技大学轻工科学与工程学院,西安 710021;
2 轻化工程国家级实验教学示范中心陕西科技大学,西安 710021;
3 陕西省机械研究院材料研究所,咸阳 712000
Graphene Oxide Controlled Cement Materials Formation of Large-scale Ordered Structure and Its Properties Characterization
LU Shenghua1,2, LUO Xiaoqian1, ZHANG Jia1, GAO Dangguo3, SUN Li1, HU Haoyan1
1 College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi’an 710021;
2 National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science and Technology), Xi’an 710021;
3 Materials Institute, Shaanxi Machinery Research Institute, Xianyang 712000
下载:  全 文 ( PDF ) ( 640KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将制备的GO与减水剂和拌合水超声处理后用于制备水泥基复合材料,研究结果表明,GO纳米片层在水泥基体中达到了均匀分散,水泥水化产物成为了规整形状的多面体状水化晶体,通过其交织交联形成了大规模规整致密的微观结构。当GO掺量为0.03%时,尺寸为30~190 nm GO的水泥基复合材料28 d时的抗压强度和抗折强度比对照样品分别提高了78.8%和112.7%,尺寸为110~410 nm GO的水泥基复合材料的抗压强度和抗折强度分别提高了72.3%和93.9%,水泥基复合材料的耐久性显著提高。同时提出了水泥基复合材料微观结构形成机理。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕生华
罗潇倩
张 佳
高党国
孙 立
胡浩岩
关键词:  氧化石墨烯  水泥基复合材料  微观结构  形成机理  性能    
Abstract: The cement composites was prepared by ultrasonic processing of prepared graphene oxide (GO) and polycarboxylate superplasticizer (PCs) in mixing water. The research results indicate that GO has been evenly dispersed in cement matrix and the cement hydration products became uniform polyhedron-shaped crystals and formed large-scale ordered and compact microstructure within the bulk cement. A 0.03% GO with size range of 30—190 nm resulted in compressive and flexural strengths increase rate of 78.8% and 112.7%, compared with the control sample. In constrast to GO with size range of 110—410 nm, the corresponding increase rate was 72.3% and 93.9%, respectively. Their durability has significantly improved compared to the control sample. Meanwhile, the forming mechanism of ordered crystals and structure was proposed.
Key words:  graphene oxide    cement composites    microstructure    forming mechanism    properties
出版日期:  2017-12-25      发布日期:  2018-05-08
ZTFLH:  TU528.572  
基金资助: 陕西省科技统筹资源引导项目(2016KTCL01-14);国家自然科学基金面上项目(21276152)
作者简介:  吕生华:男,1963年生,博士,教授,博士研究生导师,主要研究方向为氧化石墨烯的制备及应用,水泥基材料的结构与性能 E-mail:lvsh@sust.edu.cn
引用本文:    
吕生华,罗潇倩,张 佳,高党国,孙 立,胡浩岩. 氧化石墨烯调控水泥基材料形成大规模规整结构及其性能表征[J]. 《材料导报》期刊社, 2017, 31(24): 10-14.
LU Shenghua, LUO Xiaoqian, ZHANG Jia, GAO Dangguo, SUN Li, HU Haoyan. Graphene Oxide Controlled Cement Materials Formation of Large-scale Ordered Structure and Its Properties Characterization. Materials Reports, 2017, 31(24): 10-14.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.024.003  或          https://www.mater-rep.com/CN/Y2017/V31/I24/10
1 Zhang Yunhua, Yao Liping, Xu Shijin, et al. Mechanical properties of cement matrix composites reinforced with surface treated based basalt fibers[J].Acta Mater Compos Sin, 2017,34(5):1159(in Chinese).
张运华, 姚丽萍, 徐仕进,等. 面处理玄武岩纤维增强水泥基复合材料力学性能[J].复合材料学报,2017,34(5):1159.
2 Qin Xiaochuan, Meng Shaoping, Tu Yongming. Relationship between mesoscopic freeze-thaw damage and compressive strength of high-strength concrete materials[J]. Mater Rev: Res,2017,31(1):117(in Chinese).
秦晓川, 孟少平, 涂永明. 高强混凝土材料细观冻融损伤与抗压强度的关系[J].材料导报:研究篇,2017,31(1):117.
3 Chen Hui. From cement hydration reaction to spontaneous transformation of concrete[J]. China Concr, 2016(4):44(in Chinese).
陈辉.从水泥的水化到水泥和混凝土的自发变形[J].混凝土世界,2016(4):44.
4 Asgari H, Ramezanianpour A, Butt H J. Effect of water and nano-silica solution on the early stages cement hydration[J]. Constr Build Mater, 2016,132:11.
5 Liu Juanhong, Li Kang, Song Shaomin, et al.Influence of gypsum on hydration and hardening performance of limestone powder in cement based material[J].Mater Rev:Res,2017,31(2):105(in Chinese).
刘娟红,李康,宋少民,等.石膏对石灰石粉水泥基材料水化及硬化性能的影响[J].材料导报:研究篇,2017,31(2):105.
6 Cui Hongzhi,Yang Jiaming, Lin Haozeng. Research progress on carbon nanotubes dispersion techniques and CNTs-reinforced cement-based materials[J].Mater Rev: Rev, 2016,30(2):91(in Chinese).
崔宏志,杨嘉明,林炅增.碳纳米管分散技术及碳纳米管-水泥基复合材料研究进展[J].材料导报:综述篇, 2016,30(2):91.
7 Nadiv R, Peled A, Mechtcherine V, et al. Micro- and nanoparticle mineral coating for enhanced properties of carbon multifilament yarn cement-based composites[J]. Compos Part B Eng, 2017,111:179.
8 Lu Shenghua, Zhu Linlin, Jia Chunmao, et al. Influence of PCs/GO composites on microstructure and mechanical properties of cement based materials[J]. Mater Rev: Res, 2017,31(3):125(in Chinese).
吕生华,朱琳琳,贾春茂,等. PCs/GO复合物对水泥基材料微观结构和力学性能的影响[J].材料导报:研究篇,2017,31(3):125.
9 Biskri Y, Achoura D, Chelghoum N, et al. Mechanical and durability characteristics of high performance concrete containing steel slag and crystalized slag as aggregates[J]. Constr Build Mater, 2017,150:167.
10Xu Hui. Study on crack growth based on penetration of concrete[J]. J Chongqing University of Technology (Natural Science), 2012,26(10):25(in Chinese).
徐晖. 混凝土侵彻过程中的裂纹扩展[J].重庆理工大学学报(自然科学版),2012,26(10):25.
11Mang C, Jason L, Davenne L. Crack opening estimate in reinforced concrete walls using a steel-concrete bond model[J]. Archives Civil Mech Eng, 2016,16(3):422.
12Lv S H,Ma Y J, Qiu C C, et al. Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites[J]. Constr Build Mater, 2013,49:121.
13Lv S H, Liu J J, Sun T, et al. Effect of GO nanosheets on shapes of cement hydration crystals and their formation process[J]. Constr Build Mater, 2014,64:231.
14Lv S H, Sun T, Liu J J, et al. Use of graphene oxide nanosheets to regulate the microstructure of hardened cement paste to increase its strength and toughness[J]. Cryst Eng Comm, 2016,16:8508.
15Lv S H, Zhang J, Zhu L L, et al. Regulation of graphene oxide on microstructure of cement composites and its impact on compressive and flexural strength[J]. J Chem Ind Eng, 2017,68(6):2585(in Chinese).
吕生华, 张佳, 朱琳琳, 等.氧化石墨烯对水泥基复合材料微观结构的调控作用及对抗压抗折强度的影响[J]. 化工学报,2017, 68(6):2585.
16Lv S H, Deng L J, Yang W Q, et al. Fabrication of polycarboxylate/graphene oxide nanosheet composites using copolymerization, for reinforcing and toughening cement composites[J].Cem Concr Compos, 2016,66:1.
17Lv S H, Zhang J, Zhu L L, et al. Preparation of cement composites with ordered microstructures via doping with graphene oxide nanosheets and an investigation of their strength and durability[J]. Materials, 2016, 9(11):1.
18Abrishami M E, Zahabi V. Reinforcing graphene oxide/cement composite with NH2 functionalizing group[J]. Bull Mater Sci, 2017,39(4):1073.
19Mokhtar M M, Abo-El-Enein S A, Hassaan M Y, et al. Mechanical performance, pore structure and micro-structural characteristics of graphene oxide nano platelets reinforced cement[J]. Constr Build Mater, 2017,138:333.
20Wang M, Wang R M, Yao H, et al. Study on the three dimensional mechanism of graphene oxide nanosheets modified cement[J]. Constr Build Mater, 2016,126:730.
21Zhao L, Guo X L, Ge C, et al. Mechanical behavior and toughening mechanism of polycarboxylate superplasticizer modified graphene oxide reinforced cement composites[J]. Compos Part B Eng, 2017,113:308.
[1] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[2] 程东海, 张夫庭, 陶玄宇, 余超, 龚浩, 李海涛, 王德, 熊震宇. 稀土元素对钛合金激光焊接头组织及性能的影响[J]. 材料导报, 2025, 39(3): 23060020-5.
[3] 温强, 李向成, 花银群, 关庆丰, 蔡杰. 强流脉冲电子束表面改性技术及其在热障涂层改性中的研究进展[J]. 材料导报, 2025, 39(3): 23090070-11.
[4] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[5] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[6] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[7] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[8] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[9] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[10] 杨淑雁, 徐宁阳. 多因素复合环境下钢筋与混凝土黏结性能研究进展[J]. 材料导报, 2025, 39(2): 23100224-10.
[11] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[12] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[13] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[14] 李朋娟, 邹振羽, 黄鹏飞, 金鑫, 吴晓雨, 李晓丽. N/O/P共掺杂三聚氰胺基多孔碳材料的制备及储锌性能研究[J]. 材料导报, 2025, 39(2): 23100113-7.
[15] 裴海华, 赵建伟, 郑家桢, 张贵才, 张菅, 蒋平. 改性纳米锂皂石强化高温泡沫调驱性能研究[J]. 材料导报, 2025, 39(2): 22110070-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed