Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (22): 95-99    https://doi.org/10.11896/j.issn.1005-023X.2017.022.019
  材料研究 |
挤压温度对AZT802镁合金组织和性能的影响*
范晓伟1,2,张丁非1,2,冯靖凯1,2,蒋璐瑶1,2,胥钧耀1,2,潘复生2,3
1 重庆大学材料科学与工程学院,重庆 400045;
2 重庆大学国家镁合金材料工程技术研究中心,重庆 400044;
3 重庆市科学技术研究院,重庆 401123
Properties of AZT802 Magnesium Alloy
FAN Xiaowei1,2, ZHANG Dingfei1,2, FENG Jingkai1,2, JIANG Luyao1,2,XU Junyao1,2, PAN Fusheng2,3
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400045;
2 National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044;
3 Chongqing Academy of Science and Technology, Chongqing 401123
下载:  全 文 ( PDF ) ( 656KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将铸态AZT802合金分别在350 ℃、380 ℃和400 ℃下挤压,随后进行T5时效处理,研究不同挤压温度对AZT802镁合金挤压态和时效态组织和性能的影响。结果表明,当挤压温度为350 ℃时,晶粒尺寸分布不均匀,同时观察到大块的条状第二相沿挤压方向析出。当挤压温度高于350 ℃时,挤压态合金获得均匀等轴晶粒,第二相以颗粒状形貌沿晶界均匀分布。经T5时效处理后,颗粒状Mg2Sn相均匀分布于基体中,Mg17Al12相以连续相和非连续相析出,非连续析出相随时效前挤压温度的升高而逐渐增多。力学性能测试结果表明,AZT802合金在380 ℃下挤压,并进行175 ℃(3 h)T5时效处理后,获得最佳综合力学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
范晓伟
张丁非
冯靖凯
蒋璐瑶
胥钧耀
潘复生
关键词:  镁合金  挤压温度  显微组织  力学性能    
Abstract: Extrusion of as-cast AZT802 alloy was performed in the temperature of 350 ℃, 380 ℃ and 400 ℃, and then the extruded alloys were given T5 aging treatment. The effects of extrusion temperature on microstructure and mechanical properties of extruded and aged AZT802 alloy were investigated. It was found that fine equiaxed grains were obtained in alloys extruded at higher extrusion temperature. With the extrusion temperature decreasing to 350 ℃, the distribution of grain size was nonuniform. The volumes of the second phases decrease with the extrusion temperature increasing. Moreover, the particle second phases distribute along the grain boundaries homogeneously at higher extrusion temperature. While large band-shaped precipitation was observed in the alloy extruded at 350 ℃. After T5 aging treatment, Mg2Sn particles distribute homogeneously. Both continuous and discontinuous Mg17Al12 phases were observed. The volume fraction of discontinuous Mg17Al12 phase increased with the extrusion temperature rising. The AZT802 alloy extruded at 380 ℃ and aged at 175 ℃ for 3 h possessed the best mechanical properties.
Key words:  magnesium alloy    extrusion temperature    microstructure    mechanical properties
发布日期:  2018-05-08
ZTFLH:  TG376.2  
基金资助: *国家973重大基础研究项目(2013CB632200);国家自然科学基金面上项目(51571040);国家自然科学基金重点项目(51531002);国家重点研发计划项目(2016YFB0301101)
通讯作者:  张丁非,男,1963年生,教授,博士研究生导师,主要从事轻合金材料及加工技术研究E-mail:zhangdingfei@cqu.edu.cn   
作者简介:  范晓伟:男,1993年生,硕士研究生,主要研究方向为新型变形镁合金开发E-mail:fanxiaowei2014@163.com
引用本文:    
范晓伟,张丁非,冯靖凯,蒋璐瑶,胥钧耀,潘复生,. 挤压温度对AZT802镁合金组织和性能的影响*[J]. 材料导报编辑部, 2017, 31(22): 95-99.
FAN Xiaowei, ZHANG Dingfei, FENG Jingkai, JIANG Luyao,XU Junyao, PAN Fusheng,. Properties of AZT802 Magnesium Alloy. Materials Reports, 2017, 31(22): 95-99.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.022.019  或          https://www.mater-rep.com/CN/Y2017/V31/I22/95
1 Polmear I J. Magnesium alloys and applications[J]. Mater Sci Technol, 1994,10:1.
2 Kulekci M K. Magnesium and its alloys applications in automotive industry[J]. Int J Ad Manuf Technol, 2008,39(9-10):851.
3 Mordike B L, Ebert T. Magnesium properties applications potential[J]. Mater Sci Eng A, 2001,302:37.
4 Yakubtsov I A, Diak B J, Sager C A, et al. Effects of heat treatment on microstructure and tensile deformation of Mg AZ80 alloy at room temperature[J]. Mater Sci Eng A, 2008,496(1-2):247.
5 Chen Jihua, Chen Zhenhua, Yan Hongge, et al. Effects of Sn addition on microstructure and mechanical properties of Mg-Zn-Al alloys[J]. J Alloys Compd, 2008,461(1-2):209.
6 Zarandi F, Seale G,Verma R, et al. Effect of Al and Mn additions on rolling and deformation behavior of AZ series magnesium alloys[J]. Mater Sci Eng A, 2008,496(1-2):159.
7 Fan Caihe, Chen Gang, Yan Hongge, et al. Effect of rare earth in magnesium and magnesium alloy[J]. Mater Rev, 2005,19(7):61(in Chinese).
范才河,陈刚,严红革,等. 稀土在镁及镁合金中的作用[J]. 材料导报, 2005,19(7):61.
8 Jiang Feng, Zhang Xiyan, Qi Linlin, et al. The latest research progress on alloying of Mg-based materials[J]. Mater Rev, 2004,18(2):45(in Chinese).
姜锋,张喜燕,齐琳琳,等. 镁基材料合金化研究最新进展[J]. 材料导报, 2004,18(2):45.
9 Wang Ruiquan, Zhang Dahua. Influence of plumbum on microstructure and mechanical properties of AZ91 magnesium alloy[J]. Nonferrous Metals Processing, 2009,38(5):4(in Chinese).
王瑞权,张大华. Pb对AZ91镁合金铸态显微组织及力学性能的影响[J]. 有色金属加工, 2009,38(5):4.
10 Candan S, Unal M, Koc E, et al. Effects of titanium addition on mechanical and corrosion behaviours of AZ91 magnesium alloy[J]. J Alloys Compd, 2011,509(5):1958.
11 Dong Xuguang, Fu Junwei, Wang Jing, et al. Microstructure and tensile properties of as-cast and as-aged Mg-6Al-4Zn alloys with Sn addition[J]. Mater Des, 2013,51:567.
12 Liu Guojun, Dong Jie, Rong Jian. Research progress of Mg-5Sn series magnesium alloys[J]. Hot Working Technol, 2015,44(14):33(in Chinese).
刘国军,董洁,荣建. Mg-5Sn系镁合金研究进展[J]. 热加工工艺, 2015,44(14):33.
13 Jiang L, Zhang D, Dong Y, et al. Microstructure and tensile properties of as extruded and as aged Mg-Al-Zn-Mn-Sn alloy[J]. Mater Sci Technol, 2015, 31(9):1088.
14 Liu Qing. Research progress on plastic deformation mechanical of Mg alloys[J]. Acta Metall Sin, 2010,46(11):1458(in Chinese).
刘庆. 镁合金塑性变形机理研究进展[J]. 金属学报, 2010,46(11):1458.
15 Ren Lingbao, Wu Jing, Quan Gaofeng. Plastic behavior of AZ80 alloy during low strain rate tension at elevated temperature[J]. Mater Sci Eng A, 2014,612:278.
16 Wang Lifei, Mostaed E, Cao Xiaoqing, et al. Effects of texture and grain size on mechanical properties of AZ80 magnesium alloys at lower temperatures[J]. Mater Des, 2016,89:1.
17 Wang Yufan, Zhang Yingbo, Li Ningkang, et al. Effect of extrusion ratio on microstructures and mechanical properties of Mg-Zn-Y alloys[J]. Mater Rev:Res, 2016,30(8):74.
汪煜凡, 张英波,李宁康,等. 挤压比对Mg-Zn-Y合金微观组织和力学性能的影响[J]. 材料导报, 2016,30(8):74.
18 Shahzad M, Wagner L. Influence of extrusion parameters on microstructure and texture developments and their effects on mechanical properties of the magnesium alloy AZ80[J]. Mater Sci Eng A, 2009,506(1-2):141.
19 Allameh S H, Emamy M, Maleki E, et al. Effect of microstructural refinement on tensile properties of AZ80 magnesium alloy via Ca addition and extrusion process[J]. Procedia Mater Sci, 2015,11:89.
20 佘加. Mg-Al-Sn-Mn系镁合金显微组织与力学性能的研究[D]. 重庆:重庆大学, 2015.
21 Celotto S, Bastow T J. Study of precipitation in aged binary Mg-Al and ternary Mg-Al-Zn alloys using27Al NMR spectroscopy[J]. Acta Mater, 2001,49: 41.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[3] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[4] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[5] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[6] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[7] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[8] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[9] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[10] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[11] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[12] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[13] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[14] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[15] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed