Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (20): 58-62    https://doi.org/10.11896/j.issn.1005-023X.2017.020.013
  材料研究 |
固溶温度对Mg-2Gd-2Zn轧制板材显微组织和力学性能的影响*
朱涛1,2, 黄光杰1, 周芳2, 赵飞2
1 重庆大学材料科学与工程学院, 重庆 400044;
2 贵州大学材料与冶金学院, 贵阳 550025
Effect of Solid Solution Temperature on Microstructure and Mechanical Properties of the Rolled Mg-2Gd-2Zn Alloy Sheets
ZHU Tao1,2, HUANG Guangjie1, ZHOU Fang2, ZHAO Fei2
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400044;
2 College of Materials and Metallurgy, Guizhou University, Guiyang 550025
下载:  全 文 ( PDF ) ( 2405KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用OM、SEM、EDS、XRD、显微硬度计和力学试验机研究了400 ℃、430 ℃、460 ℃、490 ℃和520 ℃不同固溶温度对轧制态Mg-2Gd-2Zn合金板材组织结构和力学性能的影响。结果表明,当温度不高于490 ℃时,晶粒尺寸随固溶温度升高几乎呈线性增长趋势。第二相颗粒也随固溶温度升高总体呈减少趋势。但在490 ℃固溶温度下,第二相反而增加,且呈细小弥散分布。此时显微硬度达最大值,为77.88HV,固溶时效强化效果显著。XRD分析结果表明,当固溶温度从430 ℃升高到490 ℃时,第二相主要由MgZn2和GdZn5的初生相转变为MgZn2和GdZn的沉淀相。490 ℃固溶处理下合金板材沿RD、TD和45°方向的抗拉强度均达到最大值,分别为262 MPa、244 MPa和254 MPa;断裂伸长率略有降低,分别为34%、31%和39%,但塑性各向异性降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱涛
黄光杰
周芳
赵飞
关键词:  Mg-2Gd-2Zn合金轧制板材  固溶温度  显微组织  力学性能    
Abstract: Different solution treatments at 400 ℃, 430 ℃, 460 ℃, 490 ℃ and 520 ℃ were carried out on the rolled Mg-2Gd-2Zn alloy sheets under the same solution time of 0.5 h and aging treatment of 225 ℃×12 h. The effects of solution temperature on the microstructure, phases composition and mechanical properties of the alloy sheets were investigated by OM, SEM, EDS, XRD, micro-hardness and mechanical tester. Below 490 ℃, the grain size increased linearly and the number of the second phase particles decreased with the increasing solution temperature. Whereas the second phase particles suddenly increased and presented dispersed distribution at 490 ℃, which resulted in the highest micro-hardness of 77.88HV. XRD results show that the compositions of second phases have transformed from the primary phase of MgZn2 and GdZn5 at 430 ℃ to the precipitated phase of MgZn2 and GdZn at 490 ℃. Therefore, under 490 ℃, the Mg-2Gd-2Zn alloy sheets present good mechanical properties with the highest tensile strength of 262 MPa, 244 MPa and 254 MPa along the direction of RD, TD and 45°, and elongation of 34%,31% and 39% with low ductility anisotropy, respectively.
Key words:  rolled Mg-2Gd-2Zn alloy sheet    solid solution temperature    microstructure    mechanical properties
出版日期:  2017-10-25      发布日期:  2018-05-05
ZTFLH:  TG146.2  
基金资助: *贵州省联合基金项目(黔科合LH字[2015]7651号)
作者简介:  朱涛:女,1976年生,博士研究生,主要从事金属材料组织与性能方面的研究 E-mail:ivzhutao@126.com 黄光杰:通讯作者,男, 1964年生,教授,主要从事轻合金加工技术等方面的研究 E-mail:gjhuang@cqu.edu.cn
引用本文:    
朱涛, 黄光杰, 周芳, 赵飞. 固溶温度对Mg-2Gd-2Zn轧制板材显微组织和力学性能的影响*[J]. 《材料导报》期刊社, 2017, 31(20): 58-62.
ZHU Tao, HUANG Guangjie, ZHOU Fang, ZHAO Fei. Effect of Solid Solution Temperature on Microstructure and Mechanical Properties of the Rolled Mg-2Gd-2Zn Alloy Sheets. Materials Reports, 2017, 31(20): 58-62.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.020.013  或          https://www.mater-rep.com/CN/Y2017/V31/I20/58
1 Sun Ming, Wu Guohua, Wang Wei, et al. Research progress of Mg-Gd Alloy[J]. Mater Rev:Rev, 2009,23(6):98(in Chinese).
孙明,吴国华,王玮,等. Mg-Gd系镁合金的研究进展[J]. 材料导报:综述篇,2009,23(6):98.
2 Ding Wenjiang, Fu Penghuai, Peng Liming, et al. Advanced magnesium alloys and their applications in aerospace[J]. Spacecraft Environment Eng, 2011,28(2):103(in Chinese).
丁文江, 付彭怀, 彭立明,等. 先进镁合金材料及其在航空航天领域中的应用[J]. 航天器环境工程, 2011,28(2):103.
3 Zhang Dongyang, Wang Linsheng, Guo Doudou. Research and application of rare earth magnesium alloy[J]. Mater Rev, 2015,29(S2):514(in Chinese).
张东阳, 王林生, 郭斗斗. 稀土镁合金性能研究及应用[J]. 材料导报,2015,29(专辑26):514.
4 Jafari Nodooshan H R, Wu Guohua, Liu Wencai, et al. Effect of Gd content on high temperature mechanical properties of Mg-Gd-Y-Zr alloy[J]. Mater Sci Eng A, 2016,651:840.
5 Liu Qiuzu, Ding Xiaofeng, Liu Yanping, et al. Analysis on micro-structure and mechanical properties of Mg-Gd-Y-Nd-Zr alloy and its reinforcement mechanism[J]. J Alloys Compd, 2017,690:961.
6 Cai Zhengxu, Tang Di, Jiang Haitao, et al. Influence of Gd concentration on texture and stretch formability of rolled Mg-Zn-Gd alloys at room temperature[J]. Rare Metal Mater Eng, 2013,42(10):2073(in Chinese).
蔡正旭, 唐荻, 江海涛, 等. 不同Gd含量对变形Mg-Zn-Gd合金织构和室温成形性能的影响[J]. 稀有金属材料与工程, 2013,42(10):2073.
7 Nie J, Gao X, Zhu S. Enhanced age hardening response and creep resistance of Mg-Gd alloys containing Zn[J]. Scr Mater, 2005,53(9):1049.
8 Huang Fei, Wu Yujuan, Peng Liming, et al. Research status and development trend of LPSO structure in Mg-Gd-Zn-(Zr) alloy[J]. Mater Rev:Rev, 2011,25(2):8(in Chinese).
黄飞, 吴玉娟, 彭立明, 等. Mg-Gd-Zn(-Zr)合金中长周期堆垛有序结构的研究现状及发展趋势[J].材料导报:综述篇, 2011,25(2):8.
9 Chen Yuan, He Zhanbing. Research progress on mechanical properties of Mg-Zn-RE alloys reinforced by quasicrystals[J]. Mater Rev:Rev, 2015,29(10):82(in Chinese).
陈远, 何战兵. 准晶增强Mg-Zn-RE合金的力学性能研究进展[J]. 材料导报:综述篇,2015,29(10):82.
10Chen Xianhua, Liu Juan, Zhang Zhihua, et al. Research status and development trend of heating treatment for magnesium alloy[J]. Mater Rev:Rev, 2011,25(12):142(in Chinese).
陈先华, 刘娟, 张志华, 等. 镁合金热处理的研究现状及发展趋势[J]. 材料导报:综述篇,2011,25(12):142.
11Tian Yuan, Huang Hua, Yuan Guangyin, et al. Nanoscale icosahedral quasicrystal phase precipitation mechanisum during annealing for Mg-Zn-Gd-based alloys[J]. Mater Lett, 2014,130:236.
12Chen Jingqu, Liu Jiangwen. Research and development of G. P. zones and aging strengthening of Mg-Zn alloys[J]. Mater Rev, 2008,22(S3):342(in Chinese).
陈敬区, 刘江文. Mg-Zn系合金G.P.区和时效强化的研究进展[J]. 材料导报,2008,22(专辑Ⅻ):342.
13Saito K, Yasuhara A, Hiraga K. Microstructural changes of Gui-nier-Preston zones in an Mg-1.5at%Gd-1at%Zn alloy studied by HAADF-STEM technique[J]. J Alloys Compd, 2011,509:2031.
14Michiaki Y, Tsutomu A, Shintaro Y, et al. Mechanical properties of warm-extruded Mg-Zn-Gd alloy with coherent 14H long periodic stacking ordered structure precipitate[J]. Scr Mater, 2005,53:799.
15Lu Fumin, Ma Aibin, Jiang Jinghua, et al. Enhanced mechanical properties and rolling formability of fine-grained Mg-Gd-Zn-Zr alloy produced by equal-channel angular pressing[J]. J Alloys Compd, 2015,643:28.
16Gröbner J, Kozlov A, Fang Xiya, et al. Phase equilibria and transformations in ternary Mg-Gd-Zn alloys[J]. Acta Mater, 2015,90:400.
17Michiaki Y, Minami S, Masahiko N, et al. Formation of 14H long period stacking ordered structure and profuse stacking faults in Mg-Zn-Gd alloys during isothermal aging at high temperature[J]. Acta Mater, 2007,55:6798.
18Yuan Guangyin, Liu Yong, Lu Chen, et al. Effect of quasicrystal and Laves phases on strength and ductility of as-extruded and heat treated Mg-Zn-Gd-based alloys[J]. Mater Sci Eng A, 2008,472:75.
19Yan H, Chen R S, Han E H. Room-temperature ductility and anisotropy of two rolled Mg-Zn-Gd alloys[J]. Mater Sci Eng A, 2010,527:3317.
20Wu D, Chen R S, Han E H. Excellent room-temperature ductility and formability of rolled Mg-Gd-Zn alloy sheets[J]. J Alloys Compd, 2011,509:2856.
21Pan Shiwei, Xin Yunchang, Huang Guangjie, et al. Tailoring the texture and mechanical anisotropy of a Mg-2Zn-2Gd plate by varying the rolling path[J]. Mater Sci Eng A, 2016,653:93.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[3] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[4] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[5] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[6] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[7] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[8] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[9] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[10] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[11] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[12] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[13] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[14] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[15] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed