Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (2): 92-95    https://doi.org/10.11896/j.issn.1005-023X.2017.02.020
  材料研究 |
退火张力对无取向硅钢再结晶织构和磁性能的影响*
李德超1,2, 董俊慧1, 陈海鹏3, 王海燕2
1 内蒙古工业大学材料科学与工程学院, 呼和浩特010051;
2 内蒙古科技大学材料与冶金学院, 包头 014010;
3 内蒙古第一机械集团富成锻造有限公司, 包头 014000;
Influences of Annealing Tension on Recrystallization Texture and Magnetic Properties of Non-oriented Silicon Steel
LI Dechao1,2, DONG Junhui1, CHEN Haipeng3, WANG Haiyan2
1 School of Materials Science and Engineering,Inner Mongolia University of Technology, Hohhot 010051;
2 School of Material and Metallurgy,Inner Mongolia University of Science and Technology, Baotou 014010;
3 Inner Mongolia First Machinery Group Corporation, Baotou 014032;
下载:  全 文 ( PDF ) ( 1388KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用取向分布函数(ODF)分析了无取向电工钢冷轧板施加不同张力时再结晶退火后组织织构的变化。结果表明,随着退火张力的增加,再结晶晶粒尺寸逐渐增大,当退火张力为4 MPa时,晶粒平均直径达最大值75 μm,且尺寸均匀,Goss织构和立方织构组分也增强,其铁损P1.5/50降低到4.34 W·kg-1,同时磁感B50升至1.684 T;当张力增加到6 MPa时,晶粒直径减小至40 μm,{110}〈001〉和{001}〈100〉织构组分减弱,γ线织构组分明显增强,磁性能恶化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李德超
董俊慧
陈海鹏
王海燕
关键词:  无取向硅钢  退火张力  再结晶织构  磁性能    
Abstract: The recrystallization texture of non-oriented electrical steel under different annealing stress was investigated by orien-tation distribution function analysis. The result showed that the size of the recrystallization grain increased with the increase of annealing tension. When annealing tension was 4 MPa, the average diameter of grain reached the maximum of 75 μm with even size,and Goss texture and cube texture component were enhanced,as P1.5/50 was reduced to 4.34 W·kg-1 and B50 increased to 1.684 T. When annealing tension increased to 6 MPa, the grain size would decrease to 40 μm,leading to the decrease of intensity of {110}〈001〉 and {001}〈100〉texture, the increase of density of {111} fiber and the visible deterioration of magnetic property.
Key words:  non-oriented electrical steel    annealing tension    recrystallization texture    magnetic property
出版日期:  2017-01-25      发布日期:  2018-05-02
ZTFLH:  TG142.1  
基金资助: *国家自然科学基金(51101083);内蒙古自然科学基金(2013ms0813)
作者简介:  李德超:1980年生,硕士,副教授,主要研究方向为金属材料的组织和结构 E-mail:dechao99@163.com
引用本文:    
李德超, 董俊慧, 陈海鹏, 王海燕. 退火张力对无取向硅钢再结晶织构和磁性能的影响*[J]. 《材料导报》期刊社, 2017, 31(2): 92-95.
LI Dechao, DONG Junhui, CHEN Haipeng, WANG Haiyan. Influences of Annealing Tension on Recrystallization Texture and Magnetic Properties of Non-oriented Silicon Steel. Materials Reports, 2017, 31(2): 92-95.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.02.020  或          https://www.mater-rep.com/CN/Y2017/V31/I2/92
1 毛卫民,杨平.电工钢的材料学原理[M].北京:高等教育出版社,2013:116.
2 何忠治,赵宇,罗海文.电工钢[M]. 北京:冶金工业出版社,2012:137.
3 An Zhiguo,Hou Huanyu,Liu Hongqiang,et al. Effect of annealing temperature on magnetic anisotropy energy of a non-oriented electrical steel [J].Trans Mater Heat Treat,2014,35(2):100(in Chinese).
安治国,侯环宇,刘宏强,等.退火温度对无取向电工钢磁晶各向异性能的影响[J].材料热处理学报,2014,35(2):100.
4 Zhang Zhiyi,Mao Weimin,Gao Zhenyu,et al. Influence of processing parameters on recrystallization texture of cold rolling non-oriented silicon steel [J]. Trans Mater Heat Treat,2010,31(6):102(in Chinese).
张智义,毛卫民,高振宇,等.工艺参数对冷轧无取向硅钢再结晶织构的影响[J].材料热处理学报,2010,31(6):102.
5 Park J T, Kim J K, Szpunar J A. Recrystallisation, grain growth and texture evolution in nonoriented electrical steels[J]. Mater Sci Forum,2007,558:657.
6 Jong-tae P, Szpunar J A. Texture development during grain growth in nonoriented electrical steels[J]. ISIJ Int,2005,45(5):743.
7 Li N, Ma L, Xiang L,et al. Evolution of texture in a 2.8%Si non-oriented electrical steel annealed at 1100 ℃[J].Mater Trans JIM,2014,55:387.
8 Freitas F, Silva M R, Tavares S, et al. Texture and microstructure evolution during box annealing of a non-oriented grain electrical steel [J]. Mater Sci Forum,2012,702:595.
9 Paolinelli S C, Cunha M A. Effect of stress relief annealing temperature and atmosphere on the magnetic properties of silicon steel[J]. J Magn Magn Mater,2006,304:599.
10 Zhou Shunbing, Feng Dajun. Effect of stress in nonoriented silicon steel on texture and grain boundary development during grain growth [J]. Mater Eng,2012(9):74(in Chinese).
周顺兵,冯大军. 无取向硅钢晶粒长大过程中应力对织构和晶界变化的影响[J].材料工程,2012(9):74.
11 Lim A T, Haataja M, Cai W, et al. Stress-driven migration of simple low-angle mixed grain boundaries[J]. Acta Mater,2012,60(3):1395.
12 Winning M. Grain boundary engineering by application of mechanical stresses[J].Scr Mater,2006,54(6):987.
13 Murakami K, Tarasiuk J, Réglé H, et al. Study of the texture formation during strain induced boundary migration in electrical steel sheets[J]. Mater Sci Forum,2004,467-470:893.
14 Premkumar R, Samajdar I, et al. Relative effect(s) of texture and grain size on magnetic properties in a low silicon non-grain oriented electrical steel[J]. J Magn Magn Mater,2003,264:75.
15 Heo N H,Kim S B,Choi Y S,et al. Interfacial segregation, nucleation and texture development in 3% silicon steel[J].Acta Mater,2003,51(17):4953.
[1] 李娜, 丁西安, 王永强, 陆勤阳, 郑成思. Cu对含Ce高强高效无取向硅钢磁性能的影响[J]. 材料导报, 2024, 38(6): 22100266-7.
[2] 叶登建, 代波. 放电等离子烧结Bi、Ce掺杂钇铁石榴石陶瓷的微观结构与磁性能[J]. 材料导报, 2024, 38(4): 22070054-5.
[3] 王海军, 牛宇豪, 凌海涛, 乔家龙, 何飞, 仇圣桃. 无取向硅钢中微细夹杂物控制研究进展[J]. 材料导报, 2024, 38(3): 22040407-9.
[4] 褚绍阳, 干勇, 仇圣桃, 项利, 田玉石, 石超. 高牌号无取向硅钢生产流程中织构控制研究现状[J]. 材料导报, 2024, 38(13): 23020235-9.
[5] 何承绪, 马光, 毛航银, 祝志祥, 韩钰, 高洁, 张一航, 胡卓超. 耐热型取向硅钢涂层特性与磁性能[J]. 材料导报, 2024, 38(1): 22030301-5.
[6] 何承绪, 高洁, 毛航银, 马光, 陈新, 祝志祥, 张一航, 胡卓超. 退火温度对耐热型取向硅钢组织与磁性能的影响[J]. 材料导报, 2023, 37(8): 21090231-5.
[7] 杨亚苹, 李艳辉, 张伟. 脱合金化法制备纳米多孔铂合金的研究进展[J]. 材料导报, 2023, 37(3): 21020061-7.
[8] 张华, 李梦冉, 徐澎鹏, 李晶晶, 张学斌, 刘伟, 汪金芝, 苏海林. 二级颗粒粒径对颗粒级配软磁粉芯磁性能的影响[J]. 材料导报, 2023, 37(18): 22020065-5.
[9] 郑皓天, 王子龙, 李翔. 基于纳米晶结构的非晶合金成分设计[J]. 材料导报, 2022, 36(7): 20090031-7.
[10] 张光睿, 姚特, 龚沛, 乔禹, 王婷婷, 梁雨萍, 郝宏波. (Fe81.5Co1.5Ga17)100-xTbx合金结构及其磁性能[J]. 材料导报, 2022, 36(5): 20120138-5.
[11] 潘琳茹, 李雪莲, 王丽, 孙禄涛, 魏彬彬, 郭春生. 覆铜热处理对Fe80Si9B11非晶铁芯软磁性能的影响:一种改善非晶铁芯温度分布的方法[J]. 材料导报, 2022, 36(3): 20090082-4.
[12] 鞠帅威, 李艳辉, 张伟. 软磁性Co基块体非晶合金的研究进展[J]. 材料导报, 2021, 35(z2): 318-324.
[13] 燕飞, 李春林, 吕辉. 空心微珠增强铝基复合材料的制备工艺及性能研究进展[J]. 材料导报, 2021, 35(z2): 376-380.
[14] 刘元军, 王翊, 侯硕, 武翔, 赵晓明. 功能粒子种类对涂层涤棉织物电磁性能的影响[J]. 材料导报, 2021, 35(24): 24177-24181.
[15] 朱诚意, 鲍远凯, 汪勇, 马江华, 李光强. 新能源汽车驱动电机用无取向硅钢应用现状和性能调控研究进展[J]. 材料导报, 2021, 35(23): 23089-23096.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed