Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (17): 112-115    https://doi.org/10.11896/j.issn.1005-023X.2017.017.016
  新材料新技术 |
高通量开发非晶合金的研究进展*
吕云卓, 覃作祥, 陆兴
大连交通大学材料科学与工程学院,大连 116028
Current Research Status of High-throughput Development of Amorphous Alloys
LU Yunzhuo, QIN Zuoxiang, LU Xing
School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028
下载:  全 文 ( PDF ) ( 1554KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 革新非晶合金成分的传统试错研发方法,加速非晶合金从研究到应用的进程,已成为非晶合金研究领域的迫切需求。高通量实验技术作为美国政府2011年6月提出的“材料基因组计划”的三大要素之一,可在短时间内完成大量样品的制备与表征,可将材料从发现到应用的速度至少提高1倍,成本至少降低1/2。高通量实验可以加速非晶合金成分的筛选和优化,其重要性在非晶合金的研究中日益凸显。文章首先简要回顾非晶合金成分的传统设计方法,然后着重介绍利用高通量实验方法研发非晶合金成分的最新进展,并简要分析高通量实验技术在非晶合金研究中面临的挑战。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕云卓
覃作祥
陆兴
关键词:  非晶合金  高通量  成分开发    
Abstract: Reforming the traditional research methods for developing amorphous alloy compositions, accelerating the process of amorphous alloy from research to application, have became the urgent needs in the research field of the amorphous alloys. High-throughput experimental technology, as one of the three major elements in the “materials genome project” proposed by United States government in June 2011, can prepare and characterize a large number of samples in a short time, can at least double the speed of materials from discovery to application, lower the cost at least a half. High-throughput experiments can accelerate the screening and optimizing of amorphous alloy compositions. Its importance is highlighted in the research field of amorphous alloy. This paper firstly give a brief review of the traditional designing methods of developing amorphous alloy compositions, and then introduces the progress of the research on the developing of amorphous alloys by high-throughput experimental methods, and then briefly analyzes the challenges of high-throughput experimental techniques in the study of amorphous alloys.
Key words:  amorphous alloy    high-throughput    composition development
出版日期:  2017-09-10      发布日期:  2018-05-07
ZTFLH:  O751  
基金资助: 国家自然科学基金(51401041;51671042)
作者简介:  吕云卓:男,1985年生,博士,副教授,主要研究方向为激光3D打印非晶态合金 E-mail:luyz@djtu.edu.cn
引用本文:    
吕云卓, 覃作祥, 陆兴. 高通量开发非晶合金的研究进展*[J]. 《材料导报》期刊社, 2017, 31(17): 112-115.
LU Yunzhuo, QIN Zuoxiang, LU Xing. Current Research Status of High-throughput Development of Amorphous Alloys. Materials Reports, 2017, 31(17): 112-115.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.017.016  或          https://www.mater-rep.com/CN/Y2017/V31/I17/112
1 Johnson W L. Bulk glass-forming metallic alloys: Science and technology[J]. MRS Bull,1999,24(10):42.
2 Schroers J. Processing of bulk metallic glass[J]. Adv Mater,2010,22(14):1566.
3 Wang X J, Chen X D, Xia T D, et al. The current situation of amorphous alloy application[J]. Mater Rev,2006,20(10):75(in Chinese).
王晓军, 陈学定, 夏天东, 等. 非晶合金应用现状[J]. 材料导报,2006, 20(10):75.
4 Wang W H. The nature and properties of amorphous matter[J]. Prog Phys,2013, 33(5):177(in Chinese).
汪卫华. 非晶态物质的本质和特性[J]. 物理学进展,2013,33(5):177
5 Turnbull D. Under what conditions can a glass be formed?[J]. Contemp Phys, 1969,10(5):473.
6 Lu Z P, Tan H, Ng S C, et al. The correlation between reduced glass transition temperature and glass forming ability of bulk metallic glasses[J]. Scr Mater, 2000,42(7):667.
7 Greer A L. Confusion by design[J]. Nature,1993,366(6453):303.
8 Egami T. Atomistic mechanism of bulk metallic glass formation[J]. J Non-Cryst Solids,2003,317(1-2):30.
9 Inoue A, Zhang T, Masumoto T. Glass-forming ability of alloys[J]. J Non-Cryst Solids,1993,156:473.
10 Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys[J]. Acta Mater,2000,48(1):279.
11 Wang Y M, Qiang J B, et al. Composition rule of bulk metallic glasses and quasicrystals using electron concentration criterion[J]. J Mater Res, 2003,18(3):642.
12 Chen W, Wang Y, Qiang J, et al. Bulk metallic glasses in the Zr-Al-Ni-Cu system[J]. Acta Mater,2003,51(7):1899.
13 Shen J, Zou J, Ye L, et al. Glass-forming ability and thermal stabi-lity of a new bulk metallic glass in the quaternary Zr-Cu-Ni-Al system[J]. J Non-Cryst Solids, 2005,351(30):2519.
14 Senkov O N, Miracle D B. Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys[J]. Mater Res Bull,2001,36(12):2183.
15 Miracle D B. On the universal model for medium-range order in amorphous metal structures[J]. J Non-Cryst Solids,2003,317(1):40.
16 Wang H Z, Wang H, Ding H, et al. Progress in high-throughput materials synthesis and characterization[J]. Sci Technol Rev,2015,33(10):31(in Chinese).
王海舟, 汪洪, 丁洪, 等. 材料的高通量制备与表征技术[J]. 科技导报, 2015,33(10):31.
17 Wang H, Xiang Y, Xiang X D, et al. Materials genome enables research and development revolution[J]. Sci Technol Rev,2015,33(10):13(in Chinese).
汪洪, 向勇, 项晓东, 等. 材料基因组-材料研发新模式[J]. 科技导报,2015, 33(10):13.
18 Ding S, Gregoire J, Vlassak J J, et al. Solidification of Au-Cu-Si alloys investigated by a combinatorial approach[J]. J Appl Phys,2012,111(11):114901.
19 Tsai P, Flores K M. A laser deposition strategy for the efficient identification of glass-forming alloys[J]. Metall Mater Trans A,2015,46(9):3876.
20 Tsai P, Flores K M. A combinatorial strategy for metallic glass design via laser deposition[J]. Intermetallics,2014,55:162.
21 Tsai P, Flores K M. High-throughput discovery and characterization of multicomponent bulk metallic glass alloys[J]. Acta Mater,2016,120:426.
[1] 李娇娇, 范婧, 王重. 非晶合金中剪切温升的研究进展[J]. 材料导报, 2024, 38(8): 22050070-8.
[2] 柯松, 陈卓坤, 艾诚, 李尧, 虢婷, 孙志平. 非晶合金薄膜的复合强韧化研究进展[J]. 材料导报, 2024, 38(5): 22090022-9.
[3] 麻艳佳, 杨黎, 郭胜惠, 侯明, 朱烨, 张德起, 高冀芸. 用于低浓度氢气检测的超灵敏TiO2传感材料高通量筛选方法研究[J]. 材料导报, 2024, 38(18): 23040092-7.
[4] 王博, 盛鹏, 徐丽, 李圣驿, 白会涛, 李慧, 薛晴. 材料基因工程技术在电工材料研发中的应用与展望[J]. 材料导报, 2024, 38(13): 23020098-17.
[5] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[6] 王勇, 张微微, 李永存, 张旭昀, 孙丽丽. 第一性原理计算在电化学腐蚀中的应用研究进展[J]. 材料导报, 2023, 37(12): 21110046-11.
[7] 余国卿, 许永康, 王东亮, 牛勇, 司明达, 张茂, 龚攀, 王新云. 陶瓷颗粒增强Zr基非晶合金复合材料高温变形行为研究[J]. 材料导报, 2023, 37(1): 21110013-7.
[8] 宋晓东, 陶平均. 分子动力学模拟晶向对B2-CuZr纳米晶/Cu50Zr50非晶复合材料塑性变形行为的影响[J]. 材料导报, 2022, 36(Z1): 22030197-6.
[9] 胡家富, 谢春晓, 陶平均. 结构状态对全金属Fe基非晶合金腐蚀性能的影响[J]. 材料导报, 2022, 36(Z1): 21120217-5.
[10] 王顺平, 李春燕, 李金玲, 王海博, 寇生中. 块体非晶合金的低温性能研究进展[J]. 材料导报, 2022, 36(13): 20100255-8.
[11] 侯雅青, 苏航, 张浩, 王畅畅. 金属材料多尺度高通量制备研究进展[J]. 材料导报, 2022, 36(1): 20080258-10.
[12] 鞠帅威, 李艳辉, 张伟. 软磁性Co基块体非晶合金的研究进展[J]. 材料导报, 2021, 35(z2): 318-324.
[13] 朱坤森, 陶平均, 张超汉, 陈育淦, 张维建, 杨元政. Zr基块体非晶合金的成分设计及其性能研究[J]. 材料导报, 2021, 35(24): 24113-24116.
[14] 马娅娅, 李强, 穆保霞, 马旭. 铁含量对Fe-P-C非晶合金降解亚甲基蓝性能的影响[J]. 材料导报, 2021, 35(21): 21085-21090.
[15] 梁秀兵, 周志丹, 张志彬, 程江波, 陈永雄. 铝基非晶材料研究与再制造应用前景[J]. 材料导报, 2021, 35(1): 1003-1010.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed