Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (12): 89-92    https://doi.org/10.11896/j.issn.1005-023X.2017.012.019
  材料研究 |
Sn-58Bi合金连续挤压过程中的组织及性能演变*
尹建成, 张八淇, 刘丽娜, 陈业高, 王力强, 杨环, 钟毅
昆明理工大学材料科学与工程学院, 昆明 650093
Microstructure and Property Evolution of Sn-58Bi Alloy During Continuous Extrusion
YIN Jiancheng, ZHANG Baqi, LIU Lina, CHEN Yegao, WANG Liqiang, YANG Huan, ZHONG Yi
School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093
下载:  全 文 ( PDF ) ( 1574KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用连续挤压技术制备了Sn-58Bi合金丝,并对连续挤压过程中的组织及性能演变进行了研究。结果表明,在摩擦剪切变形区,Sn相沿变形方向被拉长,Bi相呈带状分布;镦粗区的Bi相呈粗大团状分布;粘着区开始发生动态再结晶,Bi相呈蔷薇状分布;直角弯曲挤压区发生完全动态再结晶,形成了细小的再结晶组织。在连续挤压过程中,Sn-58Bi合金的显微硬度总体呈上升趋势。合金丝的抗拉强度和伸长率均随着挤压比的增大而增大。研究表明Sn-58Bi合金的断裂主要是由Sn相和Bi相之间的相界分离和Bi相破碎引起的。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
尹建成
张八淇
刘丽娜
陈业高
王力强
杨环
钟毅
关键词:  Sn-58Bi合金丝  连续挤压  显微组织  力学性能  断裂特征    
Abstract: The Sn-58Bi alloy wires were fabricated by continuous extrusion technology. The microstructure and property evolution of the Sn-58Bi alloy during continuous extrusion were researched. The results showed that Sn matrix was elongated along the extrusion direction and the Bi phase was in band-like distribution in friction-shearing region. The Bi phase seems like coarser cluster structure in the upsetting deformation region. The dynamic recrystallization began to occur and Bi phase turns into rosette structure in the adhesion region. The dynamic recrystallization was completed and resulted in finer recrystallization structure in the right-angle bending region. The Vickers hardness of Sn-58Bi alloy increased with the increasing deformation during continuous extrusion except in the right-angle bending region. The tensile strength and elongation of alloy increase with the increase of the extrusion ratio. Analysis has indicated that the fracture of Sn-58Bi alloy wire was caused by inter-phase separation between the tin and bismuth phase and broken of bismuth.
Key words:  Sn-58Bi alloy wire    continuous extrusion    microstructure    mechanical property    fracture characteristics
出版日期:  2017-06-25      发布日期:  2018-05-08
ZTFLH:  TG115.28  
基金资助: *国家自然科学基金(50874055)
作者简介:  尹建成:男,1978年生,博士,副教授,从事金属材料成形新技术研究 E-mail:yjc_2002@126.com
引用本文:    
尹建成, 张八淇, 刘丽娜, 陈业高, 王力强, 杨环, 钟毅. Sn-58Bi合金连续挤压过程中的组织及性能演变*[J]. 《材料导报》期刊社, 2017, 31(12): 89-92.
YIN Jiancheng, ZHANG Baqi, LIU Lina, CHEN Yegao, WANG Liqiang, YANG Huan, ZHONG Yi. Microstructure and Property Evolution of Sn-58Bi Alloy During Continuous Extrusion. Materials Reports, 2017, 31(12): 89-92.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.012.019  或          https://www.mater-rep.com/CN/Y2017/V31/I12/89
1 Divya B,Hiroshi S,Alexander M. Characterization and fracture behavior of bismuth-tin thermal fuse alloy wires produced by the ohno continuous casting process[J]. Mater Characterization,2010,61(9):882.
2 Jung H R,Kim H H,Lee W J. Characterization of small-sized eutectic Sn-Bi solder bumps fabricated using electroplating[J]. J Electron Mater,2006,35(5):1067.
3 Puttlitz J K, Galyon G T. Impact of the ROHS directive on high-performance electronic systems part Ⅱ:Key reliability issues preventing the implementation of lead-free solders[J]. J Mater Sci-Mater EL,2007,1(8):331.
4 Zhang Dongmei, Ding Guipu, Wang Hong, et al. Low temperature hermetic bonding process based on electro deposited Sn/Bi alloy[J]. J Funct Mater Devices,2006,12(3):211(in Chinese).
张东梅,丁桂甫,汪红,等. 基于Sn/Bi合金的低温气密性封装工艺研究[J]. 功能材料与元器件学报,2006,12(3):211.
5 Zhang Xinping,Yin Limeng,Yu Chuanbao. Advances in research and application of lead-free solders for electronic and photonic packaging[J]. Chin J Mater Res,2008,22(1):1(in Chinese).
张新平,尹立孟,于传宝.电子和光子封装无铅钎料的研究和应用进展[J].材料研究学报,2008,22(1):1.
6 Peng Zi, Li Mingmao. Development of CONFORM process and numerical simulation[J]. Aluminium Fabrication,2009(3):7(in Chinese).
彭孜,李明茂. CONFORM连续挤压技术及数值模拟的发展[J]. 铝加工,2009(3):7.
7 Lv Xiaochun, He Peng, Zhang Binbin, et al. Effect of solidification mode on microstructure and properties of Sn-Bi solders[J].J Mater Eng,2010(10):89(in Chinese).
吕晓春,何鹏,张斌斌,等. 凝固方式对Sn-Bi钎料组织和性能的影响[J].材料工程,2010(10):89.
8 Liu X Y, Huang M L, Wu C M L, et al. Effect of Y2O3 particles on microstructure formation and shear properties of Sn-58Bi solder[J]. Mater Sci:Mater Electron,2010,21(10):1046.
9 Sui Xian, Song Baoyun, Li Bing, et al. Characteristic of microstructure and properties evolution of H65 brass alloy during continuous extrusion process[J]. Trans Nonferrous Metals Soc China,2009(6):1049(in Chinese).
隋贤,宋宝韫,李冰,等. H65黄铜合金连续挤压过程中的组织和性能演变特征[J].中国有色金属学报,2009(6):1049.
10 Kwon Y A, Daya Z A, et al. Deformation behavior of bismuth-tin alloy wires with eutectic morphology produced by the ohno continuous casting process[J]. Mater Sci Eng A,2004,368(1):323.
11 Ding Y, Wing C, Li M, et al. In-situ SEM observation on fracture behaviors of Sn-based solder alloys[J]. J Mater Sci,2005,40(8):1993.
12 Osório W R, Peixoto L C, Garcia L R, et al. Microstructure and mechanical properties of Sn-Bi, Sn-Ag and Sn-Zn lead-free solder alloys[J]. J Alloys Compd,2013,572:97.
13 Sengupta S, Soda H, Mclean A. Microstructure and properties of a bismuth-indium-tin eutectic alloy[J]. J Mater Sci,2002,37(9):1747.
14 Chen S, Zhang L, Liu J, et al. A reliability study of nanoparticles reinforced composite lead-free solder[J]. Mater Trans,2010,51(10):1720.
15 Ma B,Li J,Zhang G. Structural morphologies of Cu-Sn-Bi immiscible alloys with varied compositions[J]. J Alloys Compd,2012,535:95.
16 Pearson C E. The visous properties of extruded eutectic alloys of lead-tin and bismuth tin[J]. Metals,2002,54(1):111.
17 Long Z, Gu X, Liu P, et al. The microstructure and mechanical properties of Sn-58Bi eutectic alloy wires[C]//Brazing and Soldering 2012: IBSC Proceedings of 5th International Conference. ASM International,2012.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[3] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[4] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[5] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[6] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[7] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[8] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[9] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[10] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[11] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[12] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[13] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[14] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[15] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed