Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (12): 45-51    https://doi.org/10.11896/j.issn.1005-023X.2017.012.010
  材料研究 |
钛酸钾含量对汽车摩擦材料性能的影响*
刘伯威1,2, 徐菲2, 刘咏1, 杨阳2, 唐兵2
1 中南大学粉末冶金研究院, 长沙 410083;
2 湖南博云汽车制动材料有限公司, 长沙 410205
Influences of Potassium Titanate Content on the Performance of Automobile Brake Materials
LIU Bowei1,2 , XU Fei2, LIU Yong1, YANG Yang2, TANG Bing2
1 Powder Metallurgy Research Institute, Central South University, Changsha 410083;
2 Hunan Boyun Automobile Brake Materials Co.,Ltd., Changsha 410205
下载:  全 文 ( PDF ) ( 2062KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钛酸钾是替代石棉用于摩擦材料中的一种新兴增强材料。以一种低金属陶瓷配方为基础,采用粉末冶金法制备钛酸钾增强摩擦材料,研究钛酸钾含量(质量分数,%)对摩擦材料的物理性能、力学性能、摩擦磨损性能及制动噪音的影响。结果表明,随钛酸钾含量增加,摩擦材料的气孔率增加,密度降低,pH值增加;洛氏硬度增加,压缩性及内剪切强度降低;摩擦系数稳定性增强,磨损量先降低后增加;噪音发生频次先降低后增加。钛酸钾含量为12%时,磨损量最低,噪音表现最佳。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘伯威
徐菲
刘咏
杨阳
唐兵
关键词:  鳞片六钛酸钾  物理性能  力学性能  摩擦磨损性能  制动噪音    
Abstract: The potassium titanate flakes is a new type of reinforced material replacing asbesto used for friction material. The potassium titanate enhanced friction materials were prepared by powder metallurgy method based on a mature low metal ceramic formula. The influence of potassium titanate content (mass fraction, wt%) on the physical performance, mechanical property, friction and wear properties, and brake noise of the friction materials were investigated. The results indicate that with the increase of potassium titanate content, the porosity of friction material, pH value and Rockwell hardness value increased, while the density, compressibility and inner shear strength decreased. The stability of the friction coefficient was improved and the wear loss decreased firstly then increased. The change of the brake noise occurring frequence showed the same trend as the wear loss. When the potas-sium titanate content was 12%, the wear loss was the lowest, and the noise performance was the best.
Key words:  six potassium titanate flakes    physical performance    mechanical property    friction and wear properties    brake noise
出版日期:  2017-06-25      发布日期:  2018-05-08
ZTFLH:  U465  
基金资助: *国家重点实验室专项经费(621020009)
通讯作者:  徐菲:通讯作者,女,1986年生,硕士,研究方向为汽车摩擦材料 E-mail:xufeisnow@163.com   
作者简介:  刘伯威:男,1966年生,副教授,研究方向为汽车摩擦材料 Tel:0731-88122568 E-mail:bykf@vip.sina.com
引用本文:    
刘伯威, 徐菲, 刘咏, 杨阳, 唐兵. 钛酸钾含量对汽车摩擦材料性能的影响*[J]. 《材料导报》期刊社, 2017, 31(12): 45-51.
LIU Bowei , XU Fei, LIU Yong, YANG Yang, TANG Bing. Influences of Potassium Titanate Content on the Performance of Automobile Brake Materials. Materials Reports, 2017, 31(12): 45-51.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.012.010  或          https://www.mater-rep.com/CN/Y2017/V31/I12/45
1 Yuan Rongping. Brake friction materials: Performance evalution, ecological friendliness and their wear mechanisms[D].Beijing:Beijing University of Chemical Technology,2010:23(in Chinses).
员荣平. 制动摩擦材料的性能评价、环境友好性和摩擦机理研究[D]. 北京:北京化工大学,2010:23.
2 Song Runzhou. Preparation and study on the new type of anti-heat-fade friction material[D]. Zibo:Shandong University of Technology,2007:28(in Chinese).
宋润州. 新型抗热衰退摩擦材料的制备与研究[D]. 淄博:山东理工大学,2007:28.
3 Wang Hui. A study on the preparation of potassium titanate, the whisers and the character of reinforcement used in PP[D].Wuxi: Jiangnan University,2011(in Chinese).
王慧. 钛酸钾及钛酸钾晶须的制备及其补强性质的研究[D]. 无锡:江南大学,2011.
4 Jing Xiaoming, Lu Jiamei, Ma Chen, et al. Research status and development prospects of potassium titanate whisker [J]. J Southwest University for Nationalities:Nat Sci Ed,2008(3):539(in chinese).
景晓明, 卢佳美, 马晨, 等. 钛酸钾晶须研究现状及发展前景[J]. 西南民族大学学报:自然科学版,2008(3):539.
5 Bai Kejiang, Wang Weiping. Potassian titanate′s application of friction material[J]. Tianjin Auto,2008(8):58(in Chinese).
白克江,王伟平. 六钛酸钾在摩擦材料中的应用[J]. 天津汽车,2008(8):58.
6 Xu Yanji. Study on fabrication, growth mechanism and microstructure of K2Ti6O13[D]. Tianjin:Tianjin University,2005(in Chinese).
徐艳姬.K2Ti6O13晶须的制备、生长机理及微结构研究[D].天津:天津大学,2005.
7 Hua Manyu, Li Yimin, Li Xia. Frist-principles calculation of the geometric con figuration, energies and electronic structures of potassium hexatitanate whisker[J]. J Synth Cryst,2011(6):1573(in Chinese).
华熳煜,李益民,李夏. 六钛酸钾(K2Ti6O13)晶须几何构型、能量及电子结构的第一性原理计算[J]. 人工晶体学报,2011(6):1573.
8 Chen Kangkang, Wang Gang, Wang Laiwen. Study on growing mechanism of potassium hexatitanate whisker[J]. Bull Chin Ceram Soc,2010(4):922(in Chinese).
陈康康,王刚,王来稳. 六钛酸钾晶须的生长机理研究[J]. 硅酸盐通报,2010(4):922.
9 Yun Cheol Kim, Min Hyung Choa, Seong Jin Kim.The effect of phenolic resin, potassium titanate, and CNSL on the tribological properties of brake friction materials[J]. Wear,2008,264:204.
10 吴训锟, 王浩, 王昌松, 等. 摩擦材料中钛酸钾应用的关键问题[C]//第八届(北京)国际摩擦密封材料技术交流暨产品展示会论文集. 中国摩擦密封材料协会,2006:4.
11 Chen Xuhuang, Ling Xiuju, Lu Lihong. Treating surface and applications of potassium titanate whiskers in polymer[J]. Plastics Ma-nufacture,2007(Z1):53(in Chinese).
陈绪煌,凌秀菊,卢丽红. 六钛酸钾晶须的表面处理及其在高分子材料中的应用[J]. 塑料制造,2007(Z1):53.
12 Chen Weiping. The study of the surface modification and characte-rization and interface property of potassium titanate whiskers[D]. Nanjing:Nanjing University of Technology,2004(in Chinese).
陈卫平. 钛酸钾晶须的表面改性和表征及界面性质的研究[D]. 南京:南京工业大学,2004.
13 Yang Yang. Study on the third body on the surface of brake disc material[D]. Beijing:Beijing Jiaotong University,2012(in Chinese).
杨洋. 制动盘材料表面第三体的研究[D]. 北京:北京交通大学,2012.
14 Meng Dejian, Zhang Lijun, Yu Zhuoping. Theoretical modeling and FEA of thermomechanical coupling dynamics of ventilated disc brake[J]. Tongji University:Nat Sci,2010(6):890(in Chinese).
孟德建, 张立军, 余卓平. 通风盘式制动器热机耦合理论建模与分析[J]. 同济大学学报:自然科学版,2010(6):890.
15 Zhou Wenbin. Effects of Nb in high CE gray iron and its application for production of brake discs[D].Shanghai:Shanghai University,2010(in Chinese).
周文彬. 铌在高碳当量灰铸铁中的作用及在制动盘生产中的应用[D]. 上海:上海大学,2010.
16 Wang Shang, Zhang Yujun, Zhao Dongliang. Effect of sodium (potassium) titanate whiskers on the property of resin-based friction materials[J]. China Ceram,2010(6):11(in Chinese).
王尚, 张玉军, 赵东亮. 六钛酸钠(钾)混合晶须对树脂基摩擦材料性能的影响[J]. 中国陶瓷,2010(6):11.
17 Chen Yao, He Lin, Ding Xu. Study on the properties of mineral fiber friction materials composited by PTW/kevlar/palygorskite[J]. Lubrication Eng,2011(2):81(in Chinese).
程尧, 何林, 丁旭. 钛酸钾晶须/芳纶/坡缕石复合矿物纤维摩擦材料的摩擦性能研究[J]. 润滑与密封,2011(2):81.
18 Chen Yao, He Lin, Zhou Yuankang, et al. Study on friction property of palygorskite resin composites with PTW modified by stearic acid[J]. Mater Eng,2010(11):57(in Chinese).
程尧, 何林, 周元康, 等. 硬脂酸处理钛酸钾晶须对坡缕石纤维树脂摩擦材料摩擦性能的研究[J]. 材料工程,2010(11):57.
19 Liu Juan. Study of the hybid fibers on friction performance of vehicle brake pad[D]. Guiyang:Guizhou University,2007(in Chinese).
刘娟. 混杂纤维对盘式制动器衬片性能影响的研究[D]. 贵阳:贵州大学,2007.
20 Pan Yunjuan. Study of friction and wear properties and mechanism of semi metal friction materials used in vehicles[D]. Changsha:Central South University, 2002(in Chinese).
潘运娟. 汽车半金属摩擦材料的摩擦磨损性能及机理研究[D]. 长沙:中南大学,2002.
21 Cui Zhifeng, et al. A discussion on automobile brake noise[J]. China Sci Technol Rev,2012(28):526(in Chinese).
崔志峰,等. 汽车制动噪音的探讨[J]. 中国科技博览,2012(28):526.
22 Chen Yao, He Lin. Effects of titanium potassium whisker on mate-rials braking noise reduction[J]. Noise Vibration Control,2013(1):218(in Chinese).
程尧, 何林. 钛酸钾晶体降噪材料对制动噪声的影响[J]. 噪声与振动控制,2013(1):218.
23 Wang Chaoyang. Squeal propensity analysis and optimization of automobile disc brake system[D]. Shanghai:Shanghai Jiao Tong University,2008(in Chinese).
王朝阳. 汽车盘式制动器尖叫倾向性分析与设计改进[D]. 上海:上海交通大学,2008.
24 Jia Hongyu. Study on the influence of friction material viscoelasticity on disc brake-shoe′s vibration and braking noise[D]. Wuhan:Wuhan University of Technology,2003(in Chinese).
贾宏禹. 材料的粘弹性对摩擦片振动与制动噪声的影响研究[D]. 武汉:武汉理工大学,2003.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[3] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[4] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[5] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[6] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[7] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[8] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[9] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[10] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[11] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[12] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[13] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[14] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[15] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed