Please wait a minute...
材料导报  2025, Vol. 39 Issue (15): 25030160-8    https://doi.org/10.11896/cldb.25030160
  无机非金属及其复合材料 |
页岩表面润湿性在高温高压条件下的影响因素与研究进展
程凯1,2, 彭勃1,*, 张正昊1, 张玉鹏1, MUHAMMAD Arif2
1 中国石油大学(北京)非常规油气科学技术研究院,北京 100249
2 哈利法科技大学工程与物理科学学院,阿联酋 阿布扎比 127788
Influencing Factors and Research Progress of Shale Surface Wettability Under High-temperature and High-pressure Conditions
CHENG Kai1,2, PENG Bo1,*, ZHANG Zhenghao1, ZHANG Yupeng1, MUHAMMAD Arif2
1 Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, China
2 College of Engineering and Physical Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, UAE
下载:  全 文 ( PDF ) ( 5621KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在地下高温高压环境下,页岩的润湿特性受多种因素影响,其作用机理及实验测量方法尚存在一定争议。准确表征页岩润湿性对于提高油气采收率、优化CO2地质封存效率以及提升水力压裂回流效果意义重大。本文系统梳理了近年来高温高压条件下页岩润湿性研究的最新进展,重点分析了温度、压力、有机碳含量、盐浓度和矿物组成等关键因素对页岩润湿性的影响,评估了不同润湿性测量方法的适用性与局限性;在此基础上提出了当前研究中存在的问题与未来值得关注的方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程凯
彭勃
张正昊
张玉鹏
MUHAMMAD Arif
关键词:  页岩  表面润湿性  润湿性表征  高温高压条件  矿物组成  有机碳含量    
Abstract: Under high-temperature and high-pressure (HTHP) subsurface conditions, the wettability of shale is influenced by a variety of factors. Ho-wever, the mechanisms and quantitative measurement methods remain subjects of ongoing debate. Accurate characterization of shale wettability is crucial for enhancing oil and gas recovery, optimizing CO2 geological storage efficiency, and improving hydraulic fracture flowback. This review systematically summarizes the latest research progress on shale wettability under HTHP conditions, focusing on the effects of temperature, pressure, total organic carbon, salinity, and mineral composition. The applicability and limitations of various wettability measurement techniques are critically evaluated. Based on the analyses, the paper outlines existing research gaps and highlights promising directions for future studies.
Key words:  shale    surface wettability    wettability characterization    high-temperature and high-pressure conditions    mineral composition    total organic carbon
出版日期:  2025-08-10      发布日期:  2025-08-13
ZTFLH:  TQ013  
  TE1  
基金资助: 中国石油天然气集团有限公司-中国石油大学(北京)战略合作科技专项(ZLZX2020-01-08-04)
通讯作者:  彭勃,中国石油大学(北京)非常规油气科学技术研究院教授、博士研究生导师。主要研究方向包括油气田化学与工程、碳捕获与封存技术、石油石化污染物控制与处理、物理化学等。cbopeng@cup.edu.cn   
作者简介:  程凯,中国石油大学(北京)非常规油气科学技术研究院和哈利法科技大学工程与物理科学学院联合培养博士研究生,在彭勃教授和Muhammad Arif副教授的指导下开展二氧化碳地质封存与利用技术及油气田化学工程方面的研究。
引用本文:    
程凯, 彭勃, 张正昊, 张玉鹏, MUHAMMAD Arif. 页岩表面润湿性在高温高压条件下的影响因素与研究进展[J]. 材料导报, 2025, 39(15): 25030160-8.
CHENG Kai, PENG Bo, ZHANG Zhenghao, ZHANG Yupeng, MUHAMMAD Arif. Influencing Factors and Research Progress of Shale Surface Wettability Under High-temperature and High-pressure Conditions. Materials Reports, 2025, 39(15): 25030160-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25030160  或          https://www.mater-rep.com/CN/Y2025/V39/I15/25030160
1 Jiao F. Petroleum Exploration and Development, 2019, 46(5), 847.
2 Song Y, Li Z, Jiang Z, et al. Petroleum Exploration and Development, 2017, 44(4), 675.
3 Li J Z, Zheng M, Zhang G S, et al. Acta Petrolei Sinica, 2012, 33(A01), 89 (in Chinese).
李建忠, 郑民, 张国生, 等. 石油学报, 2012, 33(A01), 89.
4 Soliman M Y, Daal J, East L. Journal of Natural Gas Science and Engineering, 2012, 8, 52.
5 Wang Y H, Lu Y J, Li Y P, et al. Acta Petrolei Sinica, 2012, 33(A01), 149 (in Chinese).
王永辉, 卢拥军, 李永平, 等. 石油学报, 2012, 33(A01), 149.
6 Wu Q, Xu Y, Liu Y Z, et al. Oil Drilling & Production Technology, 2011, 33(2), 1 (in Chinese).
吴奇, 胥云, 刘玉章, 等. 石油钻采工艺, 2011, 33(2), 1.
7 Hyman J D, Jiménez-Martínez J, Viswanathan H S, et al. Philosophical Transactions of the Royal Society A, 2016, 374(2078), 20150426.
8 Middleton R S, Carey J W, Currier R P, et al. Applied Energy, 2015, 147, 500.
9 Hu Y L, Hao M Q, Chen G L, et al. Petroleum Exploration and Development, 2019, 46(4), 716 (in Chinese).
胡永乐, 郝明强, 陈国利, 等. 石油勘探与开发, 2019, 46(4), 716.
10 Qin J S, Han H S, Liu X L. Petroleum Exploration and Development, 2015, 42(2), 209 (in Chinese).
秦积舜, 韩海水, 刘晓蕾. 石油勘探与开发, 2015, 42(2), 209.
11 Wang H Z, Shen Z H, Li G S. Petroleum Drilling Techniques, 2011, 39(3), 30 (in Chinese).
王海柱, 沈忠厚, 李根生. 石油钻探技术, 2011, 39(3), 30.
12 Zhou J, Hu N, Xian X, et al. Advances in Geo-Energy Research, 2019, 3(2), 207.
13 Dake L P. Fundamentals of reservoir engineering, Elsevier, Netherlands, 1978, pp. 8.
14 Fanchi J R. Principles of applied reservoir simulation, Elsevier, Netherlands, 2006, pp. 21.
15 Iglauer S, Pentland C H, Busch A. Water Resources Research, 2015, 51(1), 729.
16 Chau T T. Minerals Engineering, 2009, 22(3), 213.
17 Wu Z H, Mou B Z, Wang X L, et al. Oilfield Chemistry, 2001, 18(1), 90 (in Chinese).
吴志宏, 牟伯中, 王修林, 等. 油田化学, 2001, 18(1), 90.
18 Arif M, Abu-Khamsin S A, Iglauer S. Advances in Colloid and Interface Science, 2019, 268, 91.
19 Mutailipu M, Liu Y, Jiang L, et al. Journal of Colloid and Interface Science, 2019, 534, 605.
20 Li J, Fei X, Wang L M, et al. Science Technology and Engineering, 2021, 21(24), 10134 (in Chinese).
李健, 费潇, 王腊梅, 等. 科学技术与工程, 2021, 21(24), 10134.
21 Anderson W. Journal of Petroleum Technology, 1986, 38(11), 1246.
22 Xu D S, Li Y Y, Deng Y, et al. Science Technology and Engineering, 2023, 23(28), 12038 (in Chinese).
徐东升, 李映艳, 邓远, 等. 科学技术与工程, 2023, 23(28), 12038.
23 Jing X Q. Study on the wettability of reservoir under the effect of viscoelastic surfactants. Master's Thesis, Southwest Petroleum University, China, 2016 (in Chinese).
荆雪琪. 黏弹性表面活性剂作用下的储层润湿性研究. 硕士学位论文, 西南石油大学, 2016.
24 Gao Z, Hu Q. AAPG Bulletin, 2016, 100(1), 101.
25 Ji H S, Zhang L K, Zhang L Q, et al. Journal of Northeast Petroleum University, 2023, 47(2), 117 (in Chinese).
季汉生, 张立宽, 张立强, 等. 东北石油大学学报, 2023, 47(2), 117.
26 Su S, Jiang Z, Shan X, et al. Journal of Petroleum Science and Engineering, 2018, 169, 309.
27 Valori A, Hursan G, Ma S M. Petrophysics, 2017, 58(4), 352.
28 Masalmeh S K. Journal of Petroleum Science and Engineering, 2003, 39(3-4), 399.
29 Ma Y H. Petroleum Geology & Experiment, 1995(4), 402 (in Chinese).
马永海. 石油实验地质, 1995(4), 402.
30 Xie X Z, Fu G. Coal Science and Technology, 2004(2), 65 (in Chinese).
解兴智, 傅贵. 煤炭科学技术, 2004(2), 65.
31 Sohal M A, Thyne G, Søgaard E G. Energy & Fuels, 2016, 30(8), 6306.
32 Galet L, Patry S, Dodds J. Journal of Colloid and Interface Science, 2010, 346(2), 470.
33 Robin M, Rosenberg E, Fassi-Fihri O. SPE Formation Evaluation, 1995, 10(1), 11.
34 Guiltinan E J, Cardenas M B, Bennett P C, et al. International Journal of Greenhouse Gas Control, 2017, 65, 15.
35 Mirchi V, Saraji S, Goual L, et al. Fuel, 2015, 148, 127.
36 Roshan H, Al-Yaseri A Z, Sarmadivaleh M, et al. Journal of Colloid and Interface Science, 2016, 475, 104.
37 Kaveh N S, Barnhoorn A, Wolf K. International Journal of Greenhouse Gas Control, 2016, 49, 425.
38 Wu J W. Study on pore structure and wettability of shale reservoir in Lianggaoshan Formation in eastern Sichuan. Master's Thesis, Yangtze University, China, 2023 (in Chinese).
武建伟. 川东地区凉高山组页岩储层孔隙结构及润湿性特征研究. 硕士学位论文, 长江大学, 2023.
39 Iglauer S, Al Yaseri A Z, Rezaee R, et al. Geophysical Research Letters, 2015, 42(21), 9279.
40 Qin C, Jiang Y, Luo Y, et al. Energy & Fuels, 2017, 31(1), 493.
41 Tian R R. Study on the influence mechanisms of supercritical CO2 on the water wettability of shale. Master's Thesis, Chongqing University, China, 2022 (in Chinese).
田蓉蓉. 超临界CO2对页岩水润湿性影响机理研究. 硕士学位论文, 重庆大学, 2022.
42 Tang B W. Experimental study on wettability changes and influence mechanism of shale after different temperature and pressure supercritical CO2 treatment. Master's Thesis, Chongqing University, China, 2021 (in Chinese).
唐博文. 不同温压超临界CO2作用后页岩润湿性变化及影响机理实验研究. 硕士学位论文, 重庆大学, 2021.
43 Pan B, Li Y, Wang H, et al. Energy & Fuels, 2018, 32(2), 1914.
44 Pan B, Li Y, Zhang M, et al. Journal of Petroleum Science and Engineering, 2020, 193, 107374.
45 Arif M, Lebedev M, Barifcani A, et al. Geophysical Research Letters, 2017, 44(17), 8769.
46 Yekeen N, Padmanabhan E, Abdulelah H, et al. Journal of Petroleum Science and Engineering, 2021, 196, 107673.
47 Liu X. Main factors controlling the wettability of shales. Master's Thesis, China University of Geosciences (Beijing), China, 2018 (in Chinese).
刘萱. 页岩润湿性及其主控因素. 硕士学位论文, 中国地质大学(北京), 2018.
48 Liu X J, Xiong J, Liang L X, et al. Natural Gas Geoscience, 2014, 25(10), 1644 (in Chinese).
刘向君, 熊健, 梁利喜, 等. 天然气地球科学, 2014, 25(10), 1644.
49 Hu Q H, Liu H M, Li M W, et al. Acta Petrolei Sinica, 2018, 39(3), 278 (in Chinese).
胡钦红, 刘惠民, 黎茂稳, 等. 石油学报, 2018, 39(3), 278.
50 Hu Y, Devegowda D, Sigal R. Journal of Natural Gas Science and Engineering, 2016, 33, 1078.
51 Yassin M R, Dehghanpour H, Begum M, et al. SPE Reservoir Evaluation & Engineering, 2018, 21(2), 257.
52 Yassin M R, Begum M, Dehghanpour H. International Journal of Coal Geology, 2017, 169, 74.
53 Begum M, Yassin M R, Dehghanpour H, et al. Marine and Petroleum Geology, 2019, 110, 483.
54 Arif M, Barifcani A, Zubair T, et al. In:PAPG/SPE Pakistan Section Annual Technical Conference and Exhibition. Islamabad, Pakistan, 2016, pp. 1.
55 Iglauer S. Accounts of Chemical Research, 2017, 50(5), 1134.
56 Liu R M, Kang X D, Xin J, et al. Journal of Atomic and Molecular Physics, 2021, 38(1), 38 (in Chinese).
刘汝敏, 康晓东, 辛晶, 等. 原子与分子物理学报, 2021, 38(1), 38.
57 Espinoza D N, Santamarina J C. Water Resources Research, 2010, 46(7), 1.
58 Al Yaseri A Z, Roshan H, Lebedev M, et al. Geophysical Research Letters, 2016, 43(8), 3771.
59 Yu C, Zhang Y P, Wang Z H, et al. Journal of Atomic and Molecular Physics, 2024, 41(2), 41 (in Chinese).
余曹, 张玉苹, 汪周华, 等. 原子与分子物理学报, 2024, 41(2), 41.
60 Arif M, Abu-Khamsin S A, Zhang Y, et al. Fuel, 2020, 264, 116846.
61 Arif M, Mahmoud M, Zhang Y, et al. International Journal of Coal Geology, 2021, 233, 103641.
62 Yang F, Ning Z F, Hu C P, et al. Acta Petrolei Sinica, 2013, 34(2), 301 (in Chinese).
杨峰, 宁正福, 胡昌蓬, 等. 石油学报, 2013, 34(2), 301.
63 Loucks R G, Reed R M, Ruppel S C, et al. AAPG Bulletin, 2012, 96(6), 1071.
64 Ougier-Simonin A, Renard F, Boehm C, et al. Earth-Science Reviews, 2016, 162, 198.
65 Gao Z Y, Xiong S L, Cheng Y, et al. Special Oil & Gas Reservoirs, 2021, 28(5), 10 (in Chinese).
高之业, 熊书苓, 成雨, 等. 特种油气藏, 2021, 28(5), 10.
66 Zheng G W, Gao Z Y, Huang L L, et al. Oil & Gas Geology, 2022, 43(5), 1206 (in Chinese).
郑国伟, 高之业, 黄立良, 等. 石油与天然气地质, 2022, 43(5), 1206.
67 Fan Y C, Chen L, Liu K Y, et al. Journal of Central South University (Science and Technology), 2022, 53(9), 3575 (in Chinese).
范雨辰, 陈磊, 刘可禹, 等. 中南大学学报(自然科学版), 2022, 53(9), 3575.
68 Siddiqui M A Q, Ali S, Fei H, et al. Earth-Science Reviews, 2018, 181, 1.
[1] 张刘阳, 陈潇, 吕国明, 王本仁, 周明凯. 钢渣特性随粒级分布的规律研究[J]. 材料导报, 2025, 39(3): 24010040-8.
[2] 权长青, 焦楚杰, 杨云英, 郭伟. 油页岩渣对混凝土抗压强度和抗氯离子侵蚀的影响[J]. 材料导报, 2021, 35(22): 22079-22084.
[3] 刘灏, 李青, 黄秉章, 黄榜彪, 李杰能, 王锐, 谢伟标, 梁晓前. 煤矸石烧结页岩砖材的耐久性研究[J]. 材料导报, 2019, 33(Z2): 229-232.
[4] 王亚丽, 姚羽涵, 崔素萍, 王卉, 王为. 高炉矿渣的组成和结构对其在碱性环境中早期水化特性的影响[J]. 材料导报, 2018, 32(22): 3989-3994.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed