Please wait a minute...
材料导报  2025, Vol. 39 Issue (20): 24100020-8    https://doi.org/10.11896/cldb.24100020
  金属与金属基复合材料 |
低能耗高品质钛及钛铝合金熔炼技术研究现状与展望
党乾1, 张云飞1, 刘国怀1,*, 王昭东1,*, 张弛2
1 东北大学轧制技术及连轧自动化国家重点实验室,沈阳 110819
2 沈阳工业大学材料科学与工程学院,沈阳 110870
Research Status and Prospect of Low-energy Consumption and High-quality Melting Technology for Titanium and Titanium-Aluminum Alloys
DANG Qian1, ZHANG Yunfei1, LIU Guohuai1,*, WANG Zhaodong1,*, ZHANG Chi2
1 The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
2 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
下载:  全 文 ( PDF ) ( 19063KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钛及钛铝合金因具有较高的比强度、较好的耐蚀性等优点,逐渐成为国防军工以及高端装备制造领域最为理想的结构材料之一。然而,长期以来,钛及钛铝合金主要依靠真空自耗电极电弧熔炼、真空电弧凝壳熔炼等高耗能、高成本的熔炼技术获得,合金价格居高不下,限制了其大规模推广应用。坩埚式真空感应熔炼被认为对实现低能耗、高品质、低成本的钛及钛铝合金熔炼具有重要的应用价值,是对钛工业绿色可持续发展具有颠覆性意义的关键技术。但由于钛熔体的高化学活性,完全满足钛及钛铝合金坩埚式工业化熔炼的耐火材料开发仍未取得完全突破。因此,本文针对常用的钛及钛铝合金熔炼技术以及坩埚式真空感应熔炼用耐火材料的发展现状进行系统阐述,探讨了目前真空感应熔炼用坩埚面临的问题与挑战,对低能耗、高品质钛及钛铝合金熔炼技术的未来方向展开思考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
党乾
张云飞
刘国怀
王昭东
张弛
关键词:  钛及钛铝合金  真空感应熔炼  熔炼技术  耐火材料    
Abstract: Titanium and titanium-aluminum alloys have gradually become ideal structural materials in the fields of national defense, military industry, and high-end equipment manufacturing due to their high specific strength and excellent corrosion resistance. However, for a long time, because of their energy-intensive and costly melting preparing technologies such as vacuum consumable electrode arc melting and vacuum arc skull mel-ting, these alloys are high price, which has hindered their large-scale application. Crucible-based vacuum induction melting is regarded as a key technology with significant potential for achieving low-energy, high-quality, and cost-effective melting of titanium and titanium-aluminum alloys. This technology holds transformative significance for the green and sustainable development of the titanium industry. However, due to the high chemical reactivity of titanium melts, the development of refractory materials capable of fully meeting the requirements for crucible-based industrial melting of titanium and titanium-aluminum alloys has yet to achieve a complete breakthrough. Therefore, this paper provides a systematic overview of the commonly used melting technologies for titanium and titanium-aluminum alloys, along with the current development status of refractories used in vacuum induction melting crucibles, explores the challenges and issues faced by crucibles in vacuum induction melting and reflects on the future directions of low-energy, high-quality melting technologies for titanium and titanium-aluminum alloys.
Key words:  titanium and titanium-aluminum alloy    vacuum induction melting    melting technology    refractory material
发布日期:  2025-10-27
ZTFLH:  TG214  
基金资助: 国家自然科学基金(52071065);中央高校基本科研业务费(N2007007);国家重点研发计划(2016YFB-0301201);辽宁省教育厅高等学校基本科研业务费项目(LJ212410142093)
通讯作者:  *刘国怀,东北大学轧制技术及连轧自动化国家重点实验室副教授、博士研究生导师。目前主要从事先进冶炼与特种凝固装备与工艺、耐高温结构材料的开发研究工作,实施装备-工艺-产品的联合开发模式,实现高端装备制造与新材料开发制备。liugh@ral.neu.edu.cn
王昭东,东北大学轧制技术及连轧自动化国家重点实验室教授、博士研究生导师,国务院特殊津贴,国家“万人计划”领军人才,国家科技部重点领域创新团队负责人。主要从事金属材料先进轧制技术和热处理的研究工作。zhdwang@mail.neu.edu.cn   
作者简介:  党乾,东北大学轧制技术及连轧自动化国家重点实验室博士研究生,在王昭东教授和刘国怀副教授的指导下进行研究。目前主要研究领域为钛及钛铝合金特种冶炼研究以及陶瓷耐火材料的开发工作。
引用本文:    
党乾, 张云飞, 刘国怀, 王昭东, 张弛. 低能耗高品质钛及钛铝合金熔炼技术研究现状与展望[J]. 材料导报, 2025, 39(20): 24100020-8.
DANG Qian, ZHANG Yunfei, LIU Guohuai, WANG Zhaodong, ZHANG Chi. Research Status and Prospect of Low-energy Consumption and High-quality Melting Technology for Titanium and Titanium-Aluminum Alloys. Materials Reports, 2025, 39(20): 24100020-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100020  或          https://www.mater-rep.com/CN/Y2025/V39/I20/24100020
1 Wu C, Zhang S P, Guo H M, et al. Gas Turbine Experiment and Research, 2023, 36(4), 55(in Chinese).
吴晨, 张少平, 郭会明, 等. 燃气涡轮试验与研究, 2023, 36(4), 55.
2 Kaur M, Singh K. Materials Science & Engineering C-Materials for Biological Applications, 2019, 102, 844.
3 Jin B Q, Wang Q, Zhao L, et al. Metals, 2023, 13(8), 1327.
4 An Z S, Chen Y, Zhao W. Progress in Titanium Industry, 2022, 39(4), 34(in Chinese).
安仲生, 陈岩, 赵巍. 钛工业进展, 2022, 39(4), 34.
5 Feng Q, Lv M, Mao L, et al. Metals, 2023, 13(2), 408.
6 Ma Z X, Feng J N, Hu Z J. World Nonferrous Metals, 2016, 41(12), 52(in Chinese).
马忠贤, 冯军宁, 胡志杰. 世界有色金属, 2016, 41(12), 52.
7 Feng Q Y, Tong X W, Wang J, et al. Materials Reports, 2017, 31(9), 128(in Chinese).
冯秋元, 佟学文, 王俭, 等. 材料导报, 2017, 31(9), 128.
8 Qu Y H, Liu Y Q, Zhang J X. Rare Metal Materials and Engineering, 2008, 7(3), 135(in Chinese).
曲银化, 刘茵琪, 张俊旭. 稀有金属材料与工程, 2008, 7(3), 135.
9 Zhao Q, Sun Q, Xin S, et al. Materials Science and Engineering: A, 2022, 845, 143260.
10 Fashu S, Lototskyy M, Davids M W, et al. Materials & Design, 2020, 186, 108295.
11 Khan A N, Muhyuddin M, Wadood A. Russian Journal of Non-Ferrous Metals, 2017, 58, 509.
12 Pickering L, Lototskyy M V, Davids M W, et al. Materials Today: Proceedings, 2018, 5(4), 10470.
13 Zhu M, Lv G, Li X, et al. Materials Research Express, 2023, 10(4), 046518.
14 Kovalchuk D. In: Ti 2011-Proceedings of the 12th World Conference on Titanium. Beijing, 2012, pp. 150.
15 Yang Y, Wang X, Li X, et al. Materials, 2023, 17(1), 184.
16 Lei W G, Zhao Y Q, Han D, et al. Materials Reports, 2016, 30(5), 101(in Chinese).
雷文光, 赵永庆, 韩栋, 等. 材料导报, 2016, 30(5), 101.
17 Zhang J, Xu F. Special Casting and Nonferrous Alloys, 1989(5), 27(in Chinese).
张俭, 徐发. 特种铸造及有色合金, 1989(5), 27.
18 Breig P G, Scott S W. Materials and Manufacturing Processes, 1989, 4(1), 73.
19 Dong H Q, Guo Z M, Mao X M, et al. Materials Reports, 2008(5), 68(in Chinese).
董和泉, 国子明, 毛协民, 等. 材料导报, 2008(5), 68.
20 Woodside C R, King P E, Nordlund C. Metallurgical and Materials Transactions B, 2013, 44, 154.
21 Kazemipour M, Salimijazi H, Saidi A, et al. International Journal of Hydrogen Energy, 2014, 39(24), 12784.
22 Liu Q L, Li X M, Jiang Y H. Hot Working Technology, 2016, 45(9), 9(in Chinese).
刘千里, 李向明, 蒋业华. 热加工工艺, 2016, 45(9), 9.
23 Osamu T, Toru H. Jom, 2019, 71(6), 1981.
24 Du B, Tang Z H, Zhang Z B, et al. The Chinese Journal of Nonferrous Metals, 2020, 30(12), 2989(in Chinese).
杜彬, 唐增辉, 张志斌, 等. 中国有色金属学报, 2020, 30(12), 2989.
25 Kazemipour M, Salimijazi H, Saidi A, et al. International Journal of Hydrogen Energy, 2015, 40(45), 15569.
26 Zhang L C, Liu Y, Li S, et al. Advanced Engineering Materials, 2018, 20(5), 1700842.
27 Liu X P. Interface reaction between yttria materials and titanium alloys. Master’s Thesis, Northeastern University, China, 2009(in Chinese).
刘翔鹏. 氧化钇材料与钛合金的界面反应. 硕士学位论文, 东北大学, 2009.
28 He J, Zhou H, Zhu W Q, et al. Materials Reports, 2014, 28(15), 87(in Chinese).
贺进, 周汉, 朱文琪, 等. 材料导报, 2014, 28(15), 87.
29 Ren J C, Ming G, Hu Z, et al. Journal of Materials Processing Technology, 2010, 210(9), 1190.
30 Zhao C, Wang R Y, Pan K J, et al. Chinese Science Bulletin, 2022, 67(11), 1155(in Chinese).
赵超, 王如愿, 潘科嘉, 等. 科学通报, 2022, 67(11), 1155.
31 Wan B, Zhang H, Ran C, et al. Ceramics International, 2018, 44(1), 32.
32 Wan B, Zhang H, Gao M, et al. Materials & Design, 2018, 138, 103.
33 Ming G, Cui R, Ma L, et al. Journal of Materials Processing Technology, 2011, 211(12), 2004.
34 Li N, Xia T, Heng L, et al. Applied Physics Letters, 2013, 102(25), 251603.
35 Ran C, Zhang H, Zhang H, et al. Acta Metallurgica Sinica (English Letters), 2017, 30, 456.
36 Liu A H. Study on the interface reaction and microscopic mechanism between titanium alloy melt and ceramic mold. Ph. D. Thesis, Harbin Institute of Technology, China, 2007(in Chinese).
刘爱辉. 钛合金熔体与陶瓷铸型界面反应规律及微观机理研究. 博士学位论文, 哈尔滨工业大学, 2007.
37 Li J, Zhang H, Gao M, et al. Vacuum, 2020, 182, 109701.
38 Gomes F, Puga H, Barbosa J, et al. Journal of Materials Science, 2011, 46, 4922.
39 Kostov A, Friedrich B. Computational Materials Science, 2006, 38, 374.
40 Kostov A, Friedrich B. Journal of Mining and Metallurgy B: Metallurgy, 2005, 41(1), 113.
41 Gomes F, Barbosa J, Ribeiro C S. Intermetallics, 2008, 16(11-12), 1292.
42 Liu K, Ma Y C, Gao M, et al. Intermetallics, 2005, 13(9), 925.
43 Fu B, Wang H, Zou C, et al. Transactions of Nonferrous Metals Society of China, 2014, 24(10), 3118.
44 Sun T T, Jiang M, Li C H, et al. Advanced Materials Research, 2011, 177, 502.
45 Li B, Wei Y, Wang J, et al. Journal of the American Ceramic Society, 2021, 104(9), 4878.
46 Zhang L, Fan S G. Modern Technical Ceramics, 2002, 23(4), 23(in Chinese).
张林, 范仕刚. 现代技术陶瓷, 2002, 23(4), 23.
47 Zhang W, Zhang J, Duan C L, et al. Journal of Shenyang University of Technology, 2020, 42(6), 624(in Chinese).
张巍, 张金, 段春雷, 等. 沈阳工业大学学报, 2020, 42(6), 624.
48 Klotz U E, Legner C, Bulling F, et al. The International Journal of Advanced Manufacturing Technology, 2019, 103, 343.
49 Li C H, Gao Y H, Lu X G, et al. Advances in Science and Technology, 2010, 70, 136.
50 Chen G, Kang J, Gao P, et al. International Journal of Applied Ceramic Technology, 2018, 15(6), 1459.
51 Zhang Z, Zhu K L, Liu L J, et al. Journal of the Chinese Ceramic Society, 2013, 41(9), 1278(in Chinese).
张钊, 朱凯亮, 刘岚洁, 等. 硅酸盐学报, 2013, 41(9), 1278.
52 Zhang Y, Feng Q S, Chen G Y, et al. Rare Metal Materials and Engineering, 2021, 50(3), 988(in Chinese).
张胤, 冯齐胜, 陈光耀, 等. 稀有金属材料与工程, 2021, 50(3), 988.
53 Chen G Y, Li B T, Gao P Y, et al. Journal of the Chinese Ceramic Society, 2017, 45(9), 1354(in Chinese).
陈光耀, 李宝同, 高鹏越, 等. 硅酸盐学报, 2017, 45(9), 1354.
54 Zhou L H, Chen G Y, Li B T, et al. The Chinese Journal of Nonferrous Metals, 2017, 27(11), 2276(in Chinese).
周路海, 陈光耀, 李宝同, 等. 中国有色金属学报, 2017, 27(11), 2276.
55 Kang J Y, Chen G Y, Lan B B, et al. The Chinese Journal of Nonferrous Metals, 2019, 29(4), 750(in Chinese).
康菊芸, 陈光耀, 兰豹豹, 等. 中国有色金属学报, 2019, 29(4), 750.
56 Gao M, Cui R, Ma L, et al. Journal of Materials Processing Technology, 2011, 211(12), 2004.
57 Dang Q, Huang G, Wang Y, et al. Journal of Iron and Steel Research (International), 2024, 31(3), 738.
58 Dang Q, Wang S S, Yu W, et al. Journal of Materials Research and Technology, 2024, 31, 2306.
59 Tetsui T, Kobayashi T, Kishimoto A, et al. Intermetallics, 2012, 20(1), 16.
60 Tan Y, Zhang J, Chen P, et al. Ceramics International, 2021, 47(6), 7448.
61 Zhang H R, Tang X X, Zhou L, et al. Journal of Materials Science, 2012, 47, 6451.
62 Chen Y, Dave C, Xu C, et al. Journal of the European Ceramic Society, 2012, 32(16), 4041.
63 Zhao F M, Yao S Y, Wen J. Rare Metals, 1993, 17(2), 152(in Chinese).
赵凤鸣, 姚世义, 文杰. 稀有金属, 1993, 17(2), 152.
64 Zhang Q, Zhou X, Liu H B, et al. Journal of Shanghai University (Na-tural Science Edition), 2008, 14(5), 537(in Chinese).
张蔷, 周星, 刘宏葆, 等. 上海大学学报(自然科学版), 2008, 14(5), 537.
65 Kartavykh A V, Tcherdyntsev V V, Zollinger J. Materials Chemistry and Physics, 2010, 119(3), 347.
66 Lyu S S, Zhou Y X, Ni W, et al. Journal of Ceramics, 2018, 39(6), 672(in Chinese).
吕帅帅, 周宇翔, 倪威, 等. 陶瓷学报, 2018, 39(6), 672.
67 Zhang X H, Hu P, Han J C, et al. Chinese Science Bulletin, 2015, 60(3), 257(in Chinese).
张幸红, 胡平, 韩杰才, 等. 科学通报, 2015, 60(3), 257.
68 Kartavykh A V, Tcherdyntsev V V, Zollinger J. Materials Chemistry and Physics, 2009, 116(1), 300.
69 Yang G L, Wang E M, Han J, et al. Journal of Materials Engineering, 2011, 39(11), 51(in Chinese).
杨根林, 王二敏, 韩劲, 等. 材料工程, 2011, 39(11), 51.
70 Frenzel J, Zhang Z, Neuking K, et al. Journal of Alloys and Compounds, 2004, 385(1-2), 214.
71 Nayan N, Saikrishna C N, Ramaiah K V, et al. Materials Science and Engineering: A, 2007, 465(1-2), 44.
72 Sure J, Mishra M, Tarini M, et al. Thin Solid Films, 2013, 544, 218.
[1] 张红, 鄢文, 李楠, 张会, 陈哲, 李维泰. 一维陶瓷相增强的含碳耐火材料研究进展[J]. 材料导报, 2025, 39(9): 24070074-9.
[2] 陈洋, 李增祎, 吴智, 邓承继, 娄晓明, 李勇庆, 谭嘉琳, 丁军, 余超. 催化剂添加量和温度对催化氮化制备低碳MgO-C耐火材料显微结构演变的影响[J]. 材料导报, 2025, 39(8): 24030031-5.
[3] 潘元帅, 王刚, 冯海霞, 柳军, 袁波, 田朋丹, 韩艺辉. 镍基高温合金与耐火材料界面特性研究[J]. 材料导报, 2025, 39(3): 22100206-7.
[4] 胡耕宇, 晏强, 聂建华, 刘丹, 朱青友, 尹玉成, 曾智强. 耐火材料导热系数测试方法现状及发展趋势[J]. 材料导报, 2025, 39(16): 24080232-6.
[5] 王梦强, 陈留刚, 孙红刚, 杜一昊, 司瑶晨, 李红霞. 镁铝合金添加剂对SiC-MgAl2O4材料显微结构和性能的影响[J]. 材料导报, 2024, 38(16): 23050121-6.
[6] 王玉龙, 王周福, 王玺堂, 刘浩, 马妍. 连铸用铝碳耐火材料微结构调控研究进展[J]. 材料导报, 2023, 37(1): 20090128-10.
[7] 孙红刚, 司瑶晨, 夏淼, 李红霞, 赵世贤, 杜一昊, 尚心莲. 碳化硅-六铝酸钙复合材料的抗渣机制:煤气化用无铬耐火材料新探索[J]. 材料导报, 2022, 36(20): 21040081-6.
[8] 代黎明, 肖国庆, 丁冬海. 含碳耐火材料防氧化技术综述[J]. 材料导报, 2021, 35(3): 3057-3066.
[9] 刘功起, 吴玉锋, 杨天伟, 李彬, 王朝辉. 垃圾焚烧炉关键服役材料发展现状及研究趋势[J]. 材料导报, 2021, 35(17): 17125-17135.
[10] 王杏, 陈洋, 曹桂莲, 邓承继, 丁军, 余超, 祝洪喜. 氮化温度对MgO-C耐火材料结构和性能的影响[J]. 材料导报, 2021, 35(12): 12053-12056.
[11] 贾小东, 田琳, 高伟, 陈树江, 李国华. 基于酸浸法去除水泥窑用后砖中氯化钾的研究[J]. 材料导报, 2021, 35(11): 11034-11038.
[12] 毛燕东, 刘雷, 李克忠. 煤催化气化工艺中含碱灰渣对不同耐火材料的腐蚀性研究[J]. 材料导报, 2020, 34(20): 20061-20065.
[13] 钱凡, 段雪珂, 杨文刚, 刘国齐, 李红霞. 镁铬耐火材料及高温装备绿色化应用研究进展[J]. 材料导报, 2019, 33(23): 3882-3891.
[14] 陈勇强,李红霞,刘国齐. 层状陶瓷及层状耐火材料研究进展[J]. 材料导报, 2019, 33(17): 2847-2853.
[15] 张 勇,李佩桓,贾崇林,王 涛,李鑫旭,李 阳. 变形高温合金纯净熔炼设备及工艺研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1496-1506.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed