Please wait a minute...
材料导报  2025, Vol. 39 Issue (16): 24080178-7    https://doi.org/10.11896/cldb.24080178
  高分子与聚合物基复合材料 |
GFRP筋锚杆抗拉及抗扭性能试验研究
刘一鸿1, 白晓宇1,*, 孙淦1, 王忠胜2,3, 李明4, 闫楠1
1 青岛理工大学土木工程学院,山东 青岛 266520
2 自然资源部滨海城市地下空间地质安全重点实验室,山东 青岛 266101
3 青岛地矿岩土工程有限公司,山东 青岛 266101
4 江苏海川新材料科技有限公司,江苏 镇江 212416
Experimental Investigation on Tensile and Torsional Properties of GFRP Bar Anchors
LIU Yihong1, BAI Xiaoyu1,*, SUN Gan1, WANG Zhongsheng2,3, LI Ming4, YAN Nan1
1 School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, Shandong, China
2 Key Laboratory of Geological Safety of Coastal Urban Underground Space, Ministry of Natural Resources, Qingdao 266101, Shandong, China
3 Qingdao Geology and Geotechnical Engineering Co., Ltd., Qingdao 266101, Shandong, China
4 Jiangsu Haichuan New Materials Technology Co., Ltd., Zhenjiang 212416, Jiangsu, China
下载:  全 文 ( PDF ) ( 28690KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究玻璃纤维增强聚合物(GFRP)筋抗拉与抗扭的力学特性,明确其极限抗拔承载力和极限扭矩随直径、标距变化的影响规律,分别对GFRP筋进行拉拔和扭转室内试验,尤其是对空芯无填充的GFRP筋和空芯有填充的GFRP筋进行拉拔试验,获得其极限抗拔承载力、最大扭矩、弹性模量和剪切模量等力学指标。研究表明,(1)拉拔试验中,GFRP筋的极限抗拔承载力只与直径有关,与GFRP筋长度无关,并且随着GFRP筋直径的增加,其极限抗拔承载力增长速率越显著;扭转试验中,GFRP筋最大扭矩同样只与直径相关,与标距无关,但最大扭角与标距相关,受直径变化影响较小。(2) 拉拔试验时可将工作段长度适当减小,而不会影响试验结果。(3)空芯无填充和空芯有填充的GFRP筋弹性模量基本相同,与实芯GFRP筋相比降低约33%,但空芯有填充GFRP筋的极限抗拔承载力约为无填充GFRP筋的1.53倍。(4)GFRP筋的抗拉强度大于钢筋,但剪切模量小于钢筋。研究结果对GFRP筋在土木工程中的推广应用提供了参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘一鸿
白晓宇
孙淦
王忠胜
李明
闫楠
关键词:  GFRP筋  抗拉强度  抗扭性能  弹性模量  剪切模量    
Abstract: In order to study the mechanical properties of GFRP bars in tension and torsion, and to clarify the influence of ultimate pull-out capacity and ultimate torque on diameter and gauge length, the pull-out and torsion indoor tests of GFRP bars were carried out respectively, In particular, the pull-out tests of GFRP bars with and without hollow core were carried out, and the mechanical indexes such as ultimate pull-out capacity, maximum torque, elastic modulus and shear modulus were obtained respectively. The results show that:(1) in the pull-out test, the ultimate pull-out capacity of GFRP bars is only related to the diameter, and has nothing to do with the length of anchor bars. With the increase of the diameter of GFRP bars, the growth rate of ultimate pull-out capacity is more significant. In the torsional test, the maximum torque of GFRP bars is also only related to the diameter and has nothing to do with the gauge distance, but the maximum rotation angle is related to the gauge distance and is less affected by the change of diameter. (2) Suitably reduction of working section length will not affect the pull-out test results. (3) The elastic modulus of GFRP bars without and with filling is basically the same, which is about 33% lower than that of solid GFRP bars, but the ultimate pull-out capacity of GFRP bars with filling is about 1.53 times of that of GFRP bars without filling. (4) The tensile strength of GFRP bars is greater than that of steel bars, but its shear modulus is smaller. The research results lay a foundation for the popularization and application of GFRP bars in civil engineering.
Key words:  glass fiber reinforced polymer bars    tensile strength    torsional property    elastic modulus    shear modulus
出版日期:  2025-08-15      发布日期:  2025-08-15
ZTFLH:  TU502+.6  
基金资助: 国家自然科学基金(52478348);青岛市自然科学基金原创探索项目(24-4-4-zrjj-180-jch);山东省泰山学者项目(tsqn20230624);自然资源部滨海城市地下空间地质安全重点实验室开放基金重点课题(BHKF2021Z09)
通讯作者:  白晓宇,青岛理工大学土木工程学院教授、博士研究生导师,山东省泰山学者青年专家。目前主要从事岩土与基础工程、FRP材料在岩土工程中的应用研究。baixiaoyu538@163.com   
作者简介:  刘一鸿,青岛理工大学土木工程学院硕士研究生,在白晓宇教授的指导下进行研究。目前主要从事滨海软基处理与地下结构抗浮领域的研究。
引用本文:    
刘一鸿, 白晓宇, 孙淦, 王忠胜, 李明, 闫楠. GFRP筋锚杆抗拉及抗扭性能试验研究[J]. 材料导报, 2025, 39(16): 24080178-7.
LIU Yihong, BAI Xiaoyu, SUN Gan, WANG Zhongsheng, LI Ming, YAN Nan. Experimental Investigation on Tensile and Torsional Properties of GFRP Bar Anchors. Materials Reports, 2025, 39(16): 24080178-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080178  或          https://www.mater-rep.com/CN/Y2025/V39/I16/24080178
1 Yu D X, Yu H J, Li H B, et al. Materials Reports, 2021, 35(S2), 660(in Chinese).
于冬雪, 于化杰, 黎红兵, 等. 材料导报, 2021, 35(S2), 660.
2 Bai X Y, Zhang M Y, Kuang Z, et al. Journal of Central South University (Science and Technology), 2020, 51(7), 1977(in Chinese).
白晓宇, 张明义, 匡政, 等. 中南大学学报(自然科学版), 2020, 51(7), 1977.
3 Zhang X L, Ji Z P, Huang K, et al Chinese Journal of Rock Mechanics and Engineering, 2024, 43(2), 510(in Chinese).
张鑫磊, 纪展鹏, 黄凯, 等. 岩石力学与工程学报, 2024, 43(2), 510.
4 Chen Y, Hu X, Wu Z M, et al. Materials Reports, 2023, 37(18), 83(in Chinese).
陈阳, 胡翔, 吴泽媚, 等. 材料导报, 2023, 37(18), 83.
5 Ren H T, Yao Q F, Hu A N. Journal of Building Materials, 2005, 8(5), 520(in Chinese).
任慧韬, 姚谦峰, 胡安妮. 建筑材料学报, 2005, 8(5), 520.
6 D’Antino, Tommaso, Marco A. Pisani. Composite Structures, 2023, 323, 117424.
7 Li B, Sun X H, Wu J S. Energy Technology and Management, 2024, 49(1), 27(in Chinese).
李斌, 孙小红, 吴建生. 能源技术与管理, 2024, 49(1), 27.
8 Xu K, Lu C H, Xuan G Y, et al. Materials Reports, 2021, 35(4), 4053(in Chinese).
徐可, 陆春华, 宣广宇, 等. 材料导报, 2021, 35(4), 4053.
9 Guan J W, Chen H M, Wei L L, et al. Journal of Hunan University of Science and Technology (Natural Science Edition), 2023, 38(4), 37(in Chinese).
关纪文, 陈红梅, 韦丽兰, 等. 湖南科技大学学报(自然科学版), 2023, 38(4), 37.
10 Zhu D J, Xu X F, Guo S C, et al. Journal of Hunan University (Natural Sciences), 2021, 48(7), 151(in Chinese).
朱德举, 徐旭锋, 郭帅成, 等. 湖南大学学报(自然科学版), 2021, 48(7), 151.
11 General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Test method for basic mechanical pro-perties of fiber reinforced polymer bar:GB/T 30022-2013, Standards Press of China, China, 2013(in Chinese).
中华人民共和国国家质量监督检验检疫总局. 纤维增强复合材料筋基本力学性能试验方法:GB/T30022-2013, 标准出版社, 2013.
12 Dong Z Q, Wu G. China Civil Engineering Journal, 2019, 52(10), 1(in Chinese).
董志强, 吴刚. 土木工程学报, 2019, 52(10), 1.
13 General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Fiber-reinforced plastics composites—The generals for determination of properties:GB/T 1446-2005, Standards Press of China, China, 2005(in Chinese).
中华人民共和国国家质量监督检验检疫总局. 纤维增强塑料性能试验方法总则:GB/T 1446-2005, 标准出版社, 2005.
14 General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Metallic materials—Torsion test at ambient temperature:GB/T 10128-2007, Standards Press of China, China, 2007 (in Chinese).
中华人民共和国国家质量监督检验检疫总局. 金属材料室温扭转试验方法:GB/T 10128-2007, 标准出版社, 2007.
15 Awad Y A, El-Fiky A M, Hegazy H M, et al. Civil Engineering Journal, 2023, 9(8), 1912.
16 Seo D W, Park K T, You Y J, et al. Engineering, 2013, 5(11), 865.
17 Xu X S, Zheng Y F. Journal of Building Materials, 2007, 10(6), 705(in Chinese).
徐新生, 郑永峰. 建筑材料学报, 2007, 10(6), 705.
18 Zhang X Y, Zou G P, Shen Z Q. In:China SAMPE’ 2008 International Symposium Proceedings. Beijing, China, 2008, pp. 287(in Chinese).
张学义, 邹广平, 沈志强. China SAMPE’ 2008国际学术研讨会论文集. 中国北京, 2008, pp. 287.
[1] 黄昆鹏, 张雨波, 杨楠. 类魔方式的多孔超材料设计及可调控弹性模量的研究[J]. 材料导报, 2025, 39(7): 23120207-9.
[2] 李良顺, 李化建, 杨志强, 石贺男, 董昊良. 基于粗骨料的混凝土弹性模量控制方法及预测模型[J]. 材料导报, 2025, 39(16): 24070071-15.
[3] 高婧, 刘雨薇, 徐鹏海, 徐恭义. 海水浸泡CFRP筋性能退化试验及其退化机理[J]. 材料导报, 2025, 39(14): 24070052-7.
[4] 牛克心, 余为, 郝颖. 通孔球壳胞元结构压缩力学性能[J]. 材料导报, 2024, 38(9): 22100287-6.
[5] 霍海峰, 杨雅静, 孙涛, 樊戎, 蔡靖, 胡彪. 有压与无压烧结雪无侧限抗压强度对比试验研究[J]. 材料导报, 2024, 38(5): 23060124-6.
[6] 褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
[7] 李超, 周梅, 李杨, 张凯, 郭凌志. 固废粗集料平均弹性模量与混凝土弹性模量的相关性[J]. 材料导报, 2024, 38(4): 22050271-8.
[8] 苗世坦, 刘嘉麒, 郭玲, 刘忠, 丁宝明, 张蕾. 高温处理对玄武岩纤维抗拉强度和结构的影响[J]. 材料导报, 2024, 38(11): 22090168-6.
[9] 倪彤元, 杜鑫, 莫云波, 黄森乐, 杨杨, 刘金涛. 基于ANN的HVFAC拉伸性能预测评价[J]. 材料导报, 2024, 38(10): 23070117-9.
[10] 陈宗平, 黎盛欣, 周济, 戴上秦. 海洋环境GFRP筋海水海砂混凝土梁受力性能试验及承载力计算[J]. 材料导报, 2023, 37(20): 22040207-10.
[11] 张道琦, 张林, 郭晓, 王恩刚. Cu-Ag高强高导合金的研究现状与进展[J]. 材料导报, 2023, 37(13): 21040152-6.
[12] 朱红光, 侯金良, 石晶, 葛洁雅, 吕威, 杨森, 李宗徽, 沈正艳. 碱激发材料修补普通混凝土的黏结面性能研究[J]. 材料导报, 2022, 36(16): 21030218-5.
[13] 侯永强, 尹升华, 曹永, 杨世兴, 张敏哲. 尾砂胶结充填体单轴受压应力-应变关系及其损伤本构模型[J]. 材料导报, 2022, 36(16): 21010265-8.
[14] 严金生, 周洲, 张庆年, 施韬, 周威杰, 胡卓君. 不同温度煅烧凹凸棒土的水化活性[J]. 材料导报, 2021, 35(z2): 248-253.
[15] 于芳, 晁代义, 邢雷, 王欣, 黄同瑊, 王向杰. 单级时效工艺对7075铝合金包覆薄板力学性能的影响[J]. 材料导报, 2021, 35(Z1): 411-413.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed