Please wait a minute...
材料导报  2025, Vol. 39 Issue (8): 24010101-16    https://doi.org/10.11896/cldb.24010101
  高分子与聚合物基复合材料 |
涉水环境材料损伤自修复策略研究进展
李伟华1,2,3, 杨杰1, 申婷2,3,*, 陈冲2, 汪志昊1
1 华北水利水电大学土木与交通学院,郑州 450046
2 河南省科学院化学研究所,郑州 450046
3 河南省科学院,郑州 450046
Research Progress of Self-healing Strategies for Material Damage in Water-exposed Environments
LI Weihua1,2,3, YANG Jie1, SHEN Ting2,3,*, CHEN Chong2, WANG Zhihao1
1 School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
2 Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450046, China
3 Henan Academy of Sciences, Zhengzhou 450046, China
下载:  全 文 ( PDF ) ( 72608KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 自修复技术是材料损伤治理的前瞻性策略,相关研究发展至今已有近20年。然而,目前大多数自修复策略的研究都是基于大气环境,在设计之初鲜少考虑涉水环境中大量极性水分子影响,导致在遭遇涉水应用场景时修复效果不够理想。涉水环境是海工、水工以及生物电子器件等材料典型且普遍的特殊服役环境。近年来,研究者们逐渐开始关注该问题并开展了一系列研究。本文系统总结了涉水环境材料损伤自修复策略的研究进展,重点综述基于“趋利避害”(疏水相互作用、偶极-偶极相互作用、离子-偶极相互作用、德拜力)和“因地制宜”(儿茶酚化学、亚胺键以及硼酸酯键)两种思路的涉水环境材料损伤自修复策略。同时,介绍了一种基于水分子诱导加速自修复的“物理催化”型创新发现,对它们的修复机制进行了概述,最后对涉水环境材料损伤自修复策略研究进行了评述与展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李伟华
杨杰
申婷
陈冲
汪志昊
关键词:  涉水环境  材料损伤  本征型自修复  水分子屏蔽  水分子利用    
Abstract: Self-healing technology has emerged as a promising strategy for material damage management, and related research has been underway for nearly two decades. However most of the current self-healing strategies are primarily designed for atmospheric environments, with limited consideration for the significant influence of abundant polar water molecules in aquatic environments. Consequently, when encountering application scenarios involving water exposure, the repair effectiveness of these strategies falls short of expectations. Aquatic environments are typical and widespread special service conditions for materials used in marine engineering, hydraulic engineering, and bioelectronic devices. In recent years, researchers have gradually shifted their attention towards this issue and conducted a series of studies. This paper provides a comprehensive review of the recent research progress in self-healing strategies for material damage in aquatic environments. The focus is placed on two approaches: ‘water molecule shielding-based' (utilizing hydrophobic interactions, dipole-dipole interactions, ion-dipole interactions, and van der Waals forces) and ‘water molecule exploitation-based' (employing catechol chemistry, imine bonds, and boronic ester bonds), and an overview of their repair mechanisms is summarized. The paper also concerns an innovative discovery based on water molecule-induced accelerated self-healing and adumbrates its mechanism, and finally ends with an evaluation and outlook of research on self-healing strategies in aquatic environments.
Key words:  aquatic environments    material damage    intrinsic self-healing    water molecule shielding    water molecule exploitation
出版日期:  2025-04-25      发布日期:  2025-04-18
ZTFLH:  TB381  
基金资助: 国家自然科学基金(52271355);河南省科技开发联合基金“青年科学家”项目(225200810108);河南省科学院基本科研业务经费(230618023)
通讯作者:  申婷,2017年6月、2022年6月于中山大学分别获得工学学士学位和工学博士学位。现为河南省科学院化学研究所助理研究员,主要从事自修复涂层创新理论与关键技术研究。shenting7527@163.com   
作者简介:  李伟华,博士,二级教授。近30年一直从事腐蚀与控制创新理论和前沿技术研究,研究方向包括腐蚀监检测与机理分析、钢筋混凝土结构腐蚀与控制、先进表面处理与涂层防护和天然能源电化学阴极保护。
引用本文:    
李伟华, 杨杰, 申婷, 陈冲, 汪志昊. 涉水环境材料损伤自修复策略研究进展[J]. 材料导报, 2025, 39(8): 24010101-16.
LI Weihua, YANG Jie, SHEN Ting, CHEN Chong, WANG Zhihao. Research Progress of Self-healing Strategies for Material Damage in Water-exposed Environments. Materials Reports, 2025, 39(8): 24010101-16.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010101  或          https://www.mater-rep.com/CN/Y2025/V39/I8/24010101
1 White S R, Sottos N R, Geubelle P H, et al. Nature, 2001, 409(6822), 794.
2 Ratwani C R, Kamali A R, Abdelkader A M. Progress in Materials Science, 2023, 131, 101001.
3 Yang S, Du X, Deng S, et al. Chemical Engineering Journal, 2020, 398, 125654.
4 Roels E, Terryn S, Brancart J, et al. Soft Robotics, 2020, 7(6), 711.
5 Zhao W, Han X, Lu Y, et al. Progress in Organic Coatings, 2023, 174, 107237.
6 Li H, Li S, Li Q, et al. Progress in Organic Coatings, 2023, 175, 107362.
7 Ye G, Jiang T. Polymers, 2021, 13(17), 2936.
8 Li Z J, Zhong J, Liu M C, et al. Chinese Journal of Polymer Science, 2020, 38, 932.
9 Chen L, Xu J, Zhu M, et al. Materials Horizons, 2023, 10(10), 4000.
10 Nie J, Huang J, Fan J, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(36), 13724.
11 Fan T, Chen G, Xie H, et al. Chemical Engineering Journal, 2020, 393, 124685.
12 Dai J, Wang Z, Wu Z, et al. ACS Applied Polymer Materials, 2023, 5(4), 2575.
13 Qiao X, Cai Y, Kong Z, et al. ACS Sensors, 2023, 8(7), 2834.
14 Li B, Xue S, Mu P, et al. ACS Applied Materials & Interfaces, 2022, 14(26), 30192.
15 Willocq B, Odent J, Dubois P, et al. RSC Advances, 2020, 10(23), 13766.
16 Blaiszik B J, Kramer S L, Olugebefola S C, et al. Annual Review of Materials Research, 2010, 40, 179.
17 Xia N N, Xiong X M, Wang J, et al. Chemical Science, 2016, 7(4), 2736.
18 Cao Y, Tan Y J, Li S, et al. Nature Electronics, 2019, 2(2), 75.
19 Guo H, Han Y, Zhao W, et al. Nature Communications, 2020, 11(1), 2037.
20 Shafiq Z, Cui J, Pastor-Pérez L, et al. Angewandte Chemie, 2012, 124(18), 4408.
21 Xia N N, Xiong X M, Rong M Z, et al. ACS Applied Materials & Interfaces, 2017, 9(42), 37300.
22 Li J, Ejima H, Yoshie N. ACS Applied Materials & Interfaces, 2016, 8(29), 19047.
23 He C L, Liang F C, Veeramuthu L, et al. Advanced Science, 2021, 8(21), 2102275.
24 Victor A, Ribeiro J, Araújo F F. Journal of Mechanical Engineering and Biomechanics, 2019, 4(1), 1.
25 Liu J, Yao Y, Li X, et al. Chemical Engineering Journal, 2021, 408, 127262.
26 Kausar A. Polymer-Plastics Technology and Materials, 2020, 59(11), 1148.
27 Liu J, Zhang J, Tang J, et al. ES Materials & Manufacturing, 2020, 10(5), 29.
28 Seo E, Lee J W, Lee D, et al. Colloids and Surfaces B:Biointerfaces, 2021, 207, 112003.
29 Miranda I, Souza A, Sousa P, et al. Journal of Functional Biomaterials, 2021, 13(1), 2.
30 Campbell S B, Wu Q, Yazbeck J, et al. ACS Biomaterials Science & Engineering, 2020, 7(7), 2880.
31 Sun J, Liu C, Duan J, et al. Journal of Materials Science & Technology, 2022, 124, 1.
32 Zhao P, Cao M, Liu C, et al. ACS Applied Materials & Interfaces, 2022, 14(23), 27413.
33 Kang J, Son D, Wang G J N, et al. Advanced Materials, 2018, 30(13), 1706846.
34 Poussard L, Burel F, Couvercelle J P, et al. Journal of Applied Polymer Science, 2006, 100(4), 3312.
35 Khatib M, Zohar O, Saliba W, et al. Advanced Functional Materials, 2020, 30(22), 1910196.
36 Liu Y, Zheng J, Zhang X, et al. RSC Advances, 2021, 11(24), 14665.
37 Liu Y, Zheng J, Zhang X, et al. Journal of Colloid and Interface Science, 2021, 593, 105.
38 Florindo C, Branco L C, Marrucho I M. ChemSusChem, 2019, 12(8), 1549.
39 Zainal-Abidin M H, Hayyan M, Wong W F. Journal of Industrial and Engineering Chemistry, 2021, 97, 142.
40 Kivela H, Salomaki M, Vainikka P, et al. The Journal of Physical Chemistry B, 2022, 126(2), 513.
41 Zhang H, Hu Y, Liu Z, et al. ACS Materials Letters, 2023, 5(10), 2621.
42 Gong Y, Yu L, Lyu X, et al. Advanced Functional Materials, 2023, 33(47), 2305314
43 Cao J, Su E. Journal of Cleaner Production, 2021, 314, 127965.
44 Dunitz J D, Taylor R. Chemistry-A European Journal, 1997, 3(1), 89.
45 Hasegawa R, Takahashi Y, Chatani Y, et al. Polymer Journal, 1972, 3(5), 600.
46 Lv J, Cheng Y. Chemical Society Reviews, 2021, 50(9), 5435.
47 Paz-Gómez G, DelCaño-Ochoa J C, Rodríguez-Alabanda O, et al. Coa-tings, 2019, 9(5), 293.
48 Cao Y, Wu H, Allec S I, et al. Advanced Materials, 2018, 30(49), 1804602.
49 Yao H, Liu T, Jia Y, et al. Advanced Functional Materials, 2023, 33, 2307455.
50 An S, Lyu H, Seong D, et al. Polymers, 2023, 15(16), 3391.
51 Wang N, Zhang L, Liu J, et al. Journal of Materials Chemistry A, 2022, 10(38), 20509.
52 Liu Y, Chen T, Jin Z, et al. Nature Communications, 2022, 13(1), 1338.
53 Deng H, Wang H, Tian Y, et al. Materials Horizons, 2023, 10(11), 5256.
54 Fu R, Guan Y, Xiao C, et al. Small Methods, 2022, 6(5), 2101513.
55 Niu P, Liu B, Li H. Journal of Physics:Conference Series, 2021, 2083(2), 022066.
56 Yin R, Li L, Wang L, et al. Journal of Semiconductors, 2023, 44(3), 032602.
57 Yu Z, Wu P. Advanced Materials, 2021, 33(24), 2008479.
58 Zhao Y, Wang F, Liu J, et al. ACS Applied Materials & Interfaces, 2023, 15(23), 28664.
59 Chen L, Feng W, Li M, et al. Advanced Functional Materials, 2022, 32(1), 2107538.
60 Liu C, Li J, Jin Z, et al. Composites Communications, 2019, 15, 155.
61 Tran V T, Mredha M T I, Na J Y, et al. Chemical Engineering Journal, 2020, 394, 124941.
62 Burkett J R, Hight L M, Kenny P, et al. Journal of the American Chemical Society, 2010, 132(36), 12531.
63 Lee H, Scherer N F, Messersmith P B. Proceedings of the National Academy of Sciences, 2006, 103(35), 12999.
64 Ahn B K. Journal of the American Chemical Society, 2017, 139(30), 10166.
65 Chen J, Zeng H. Langmuir, 2022, 38(43), 12999.
66 Peng W L, Zhang Z P, Rong M Z, et al. ACS Applied Materials & Interfaces, 2020, 12(24), 27614.
67 Zheng H, Chen M, Sun Y, et al. Chemical Engineering Journal, 2022, 446, 136931.
68 Yang H, Fustin C A. Macromolecular Chemistry and Physics, 2023, 224(20), 2300211.
69 Belowich M E, Stoddart J F. Chemical Society Reviews, 2012, 41(6), 2003.
70 Caprice K, Pupier M, Kruve A, et al. Chemical Science, 2018, 9(5), 1317.
71 Zhao L, Ke T, Ling Q, et al. ACS Applied Polymer Materials, 2021, 3(11), 5494.
72 Xia N N, Rong M Z, Zhang M Q. Journal of Materials Chemistry A, 2016, 4(37), 14122.
73 Wang Y, Huang H, Wu J, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(50), 18506.
74 Ji F, Li J, Zhang G, et al. Polymer, 2019, 184, 121882.
75 Yuan D, Delpierre S B, Ke K, et al. ACS Applied Materials & Interfaces, 2019, 11(19), 17853.
76 Davydovich D, Urban M W. Nature Communications, 2020, 11(1), 5743.
[1] 丁鉴峒, 谌阳, 宋坤, 张立佳, 孟赟慧, 李晓白, 潘梦瑶, 马洪伟. 纤维素基光子晶体的研究进展[J]. 材料导报, 2025, 39(1): 24100081-9.
[2] 甘如饴, 浮洁, 綦松, 余淼. 基于微流控系统的磁流变胶微观结构演化与磁敏行为分析[J]. 材料导报, 2024, 38(21): 23060186-5.
[3] 孙元杰, 李志刚, 王艺, 田波, 李金凤, 张楠, 赵浚峰, 张建伟, 李拓, 赵弘韬. 金属卤化物钙钛矿纳米晶体/聚合物复合材料的研究进展[J]. 材料导报, 2024, 38(15): 23040056-10.
[4] 白忠薛, 王学川, 李佳俊, 冯宇宇, 白波涛, 黄梦晨, 岳欧阳, 刘新华. 生物质基导电水凝胶的研究进展[J]. 材料导报, 2024, 38(4): 22090215-14.
[5] 贺耿超, 黄艳斐, 邢志国, 周龙龙, 吕振林, 贾磊, 郭伟玲. KNN基无铅压电陶瓷相界研究进展[J]. 材料导报, 2023, 37(20): 21090233-9.
[6] 颜宇豪, 郭洋, 汪李超, 侯成义, 张青红, 李耀刚, 秦宗益, 王宏志. 基于离子液体电解质的柔性电化学O2传感器性能研究[J]. 材料导报, 2023, 37(12): 21040216-5.
[7] 李雪伍, 周龙龙, 黄艳斐, 郭伟玲, 邢志国, 王海斗, 呼帅邦. 铌酸钾钠压电陶瓷制备工艺研究进展[J]. 材料导报, 2023, 37(11): 21070049-9.
[8] 李良, 赵修贤, 王彬彬, 杨帅军, 聂永, 蒋绪川. 热致变色过渡金属配合物的变色机理及应用[J]. 材料导报, 2023, 37(4): 21010049-11.
[9] 张梦梦, 刘梦, 杨丽丽, 葛邓腾. 液晶材料在智能光学器件中的应用研究进展[J]. 材料导报, 2022, 36(18): 21040006-9.
[10] 赵明媚, 张进秋, 彭志召, 张建, 李欣. 剪切增稠液体理论基础和工程应用进展概述[J]. 材料导报, 2022, 36(9): 20070135-8.
[11] 宋牙牙, 黄艳斐, 郭伟玲, 邢志国, 王海斗, 吕振林, 张执南. 铌酸钾钠基无铅压电陶瓷掺杂改性的研究进展[J]. 材料导报, 2022, 36(5): 21030094-10.
[12] 李鹏, 杜艺博, 黄培炜, 丁瀛, 刘根柱. 基于无壁型微脉管的光能损伤自修复复合材料[J]. 材料导报, 2022, 36(2): 20090371-5.
[13] 张令坤, 孟俊行, 侯成义, 张青红, 李耀刚, 王宏志. 多刺激响应的MWCNTs-CS/AFP双层致动器:能量的转化与应用[J]. 材料导报, 2021, 35(20): 20155-20160.
[14] 李杰锋, 杨忠清. 形状记忆合金热力学经验本构模型的数值分析及修正[J]. 材料导报, 2021, 35(18): 18116-18123.
[15] 张䶮, 朱永乐, 黄丽娟, 王永安, 赵瑾, 聂志勇. 介孔二氧化硅门控开关在分析检测中的研究进展[J]. 材料导报, 2021, 35(15): 15081-15087.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[4] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[7] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[8] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[9] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed