Please wait a minute...
材料导报  2020, Vol. 34 Issue (19): 19128-19133    https://doi.org/10.11896/cldb.19070091
  金属与金属基复合材料 |
熔化极气体保护焊导电嘴载流磨损及使用寿命的研究进展
栗卓新1,, 丛兴1, 李红1, Kim Hee Jin2
1 北京工业大学材料科学与工程学院,北京 100020
2 韩国工业技术研究院熔焊研究组,天安 330-825
Progress on Current-carrying Wear and Service Life of Contact Tube for GMAW
LI Zhuoxin1, CONG Xing1, LI Hong1, Kim Hee Jin2
1 School of Materials Science and Engineering, Beijing University of Technology, Beijing 100020,China
2 Advanced Joining Research Team, Korea Institute of Industrial Technology, Cheonan-si 330-825, Korea
下载:  全 文 ( PDF ) ( 3997KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 现代制造业要求焊接技术向智能化、连续化、绿色化发展,目前熔化极气体保护焊焊接过程中焊丝对导电嘴的磨损率过大,频繁地停工更换和清理零部件限制了熔化极气体保护焊自动化焊接的发展。电接触条件下的载流磨损是导致材料磨损率过大的重要原因,主要体现在两个方面:(1)电接触产生焦耳热,使环境温度大幅提高,局部温度甚至超过500 ℃,造成电接触材料发生软化;(2)电接触点的不断运动和变化导致产生微观电弧,造成局部材料的剧烈熔融和氧化。因电接触造成的电气磨损与机械磨损相互加剧,大幅缩短了导电嘴器件的使用寿命。
接触电阻是产生焦耳热和微观电弧的关键因素,镀铜钢焊丝与导电嘴之间的接触电阻值约为1.6 mΩ,而对于无镀铜钢焊,该值提高到约2.5 mΩ。导电嘴使用寿命随接触电阻、焊接电流、送丝速度增大而缩短;法向接触载荷一方面增大机械磨损,另一方面减少电气磨损,因此对导电嘴寿命有着复杂影响。高强度、高导电性导电嘴材料有利于延长导电嘴使用寿命,利用双相析出沉淀强化的Cu-Cr-Zr系铜合金能在显著提高材料强度的同时尽可能地减少因合金固溶导致的电导率损失,与此同时,石墨基、粉末冶金及复合材料导电嘴也有一定的实用性和研究价值。
光洁平整的焊丝表面有利于延长导电嘴使用寿命,在无镀铜焊丝表面制备润滑性涂层能进一步提升导电嘴磨损性能。由于焊接条件的特殊性,表面涂层需兼具高温稳定性、高导电性等特征,具有表面效应和小尺寸效应的固体润滑剂在这方面具有极大的优势和应用前景。
本文综述了熔化极气体保护焊导电嘴载流磨损机理的研究进展,从工艺参数、导电嘴材料、焊丝表面状态等方面分析了影响导电嘴载流磨损的因素和延长导电嘴寿命的可行方法,对减少导电嘴磨损,延长其寿命,推动机器人自动化焊接和无镀铜实心焊丝研发制造具有一定的指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
栗卓新
丛兴
李红
Kim Hee Jin
关键词:  熔化极气体保护焊  工艺性能  导电嘴寿命  载流磨损    
Abstract: Modern manufacturing requires welding technology to be intelligence, continuous and environmentally friendly. At present, the high wear rate of the contact tube lead to frequent downtime and overhaul during welding, limiting the development of the gas metal arc welding. The current-carrying wear under electrical contact conditions is an important cause of excessive wear and it is mainly reflected in two aspects: (1) Joule heat generated by electrical contact causes the ambient temperature to increase greatly, and the local temperature even exceeds 500 ℃, causing softening of electrical contact materials; (2) constant movement and change of electrical contacts leads to microscopic arcing, causing intense melting and oxidation of local materials. The mechanical wear and electrical wear caused by electrical contact are mutually intensified, greatly reducing the service life of contact tube.
Contact resistance is vital to the generation of Joule heat and micro-arc. The contact resistance between the copper-coated steel wire and the contact tube is 1.6 mΩ, while for copper-free steel wire this value is increased to 2.5 mΩ. The life of the contact tube decreases with the increase of contact resistance, welding current and wire feed speed; the normal contact load increases the mechanical wear on the one hand and reduces the electrical wear on the other hand, so it has a complicated influence on the life of the contactor. The use of high-strength and high-conductivity material is beneficial to improve the service life of the contactor. Cu-Cr-Zr based copper alloy strengthened by two-phase precipitation can significantly improve the material strength while minimizing the conductance loss caused by solid solution. In addition, graphite-based, powder metallurgy and composite material contact tube have certain practicability and is worth studying.
A smooth and flat surface of the wire helps to extend the service life of the contact tube and surface lubricity coating prepared on non-copper coated wire can further improve its wear property. Welding conditions require the surface coating to have both high temperature stability and high electrical conductivity. The solid lubricant with surface effect and small size effect has great advantages and application prospects in this respect.
In this paper, the research progress of the current-carrying mechanism of contact tube in GMAW is reviewed. The factors affecting the current-carrying wear and the feasible methods for improving the life of the contact tube are analyzed from the aspects of process parameters, contact tube material and surface state of the wire. It has certain guiding significance for reducing the wear of the contact tube, improving its life and promoting the development and manufacture of robotic automatic welding and non-copper coated solid wire.
Key words:  GMAW    processing property    life of contact tube    current-carrying wear
                    发布日期:  2020-11-05
ZTFLH:  TG422.3  
基金资助: 国家自然科学基金(51574011);北京市自然科学基金(3202002)
通讯作者:  13910321588@139.com   
作者简介:  栗卓新,北京工业大学材料与制造学部教授、博士研究生导师。1984年于天津大学获工学学士学位,1988年于太原工业大学获工学硕士学位,1994年于天津大学获工学博士学位,1994—1996年在天津大学国家燃烧学重点实验室博士后流动站从事博士后研究工作,2007—2008年在英国伯明翰大学材料冶金系任高级研究员。主要研究方向:基于统计分析的焊接冶金与材料优化设计和质量控制,轻金属的精密连接,纳米热喷涂等。
丛兴,2017年6月毕业于南京邮电大学,获得理学学士学位。现为北京工业大学材料与制造学部硕士研究生,在栗卓新教授的指导下进行研究。目前主要研究领域为铝合金焊接和冶金。
引用本文:    
栗卓新, 丛兴, 李红, Kim Hee Jin. 熔化极气体保护焊导电嘴载流磨损及使用寿命的研究进展[J]. 材料导报, 2020, 34(19): 19128-19133.
LI Zhuoxin, CONG Xing, LI Hong, Kim Hee Jin. Progress on Current-carrying Wear and Service Life of Contact Tube for GMAW. Materials Reports, 2020, 34(19): 19128-19133.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070091  或          http://www.mater-rep.com/CN/Y2020/V34/I19/19128
1 Nebot E. Engineering,2018,4(4),446.
2 Chen J, Su J H, Zhang H W. Welding,2017(2),1(in Chinese).
陈健,苏金花,张汇文.焊接,2017(2),1.
3 Milenko B. Electrical Contact, CRC Press, UK,2017.
4 Hassan K. Welding Journal,2018,97(8),36.
5 Henrik G, Tamás F. Design, fabrication and economy of metal structures, Springer Berlin Heidelberg Press, Germany,2013.
6 Shimizu H, Yokota Y, Mizuno M, et al. Science and Technology of Wel-ding and Joining,2013,11(1),94.
7 Nagasawa H, Kato K. Wear,1998,216(2),179.
8 Shimizu H, Yokota Y, Mizuno M, et al. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society,2005,23(2),220.
9 Wolframmōhler, Chen J S. Foreign Locomotive & Rolling Stock Technology,2002(4),41(in Chinese).
Wolframmōhler,程金松.国外机车车辆工艺,2002(4),41.
10 Lopez L A, Perez G Y, Garcia F J, et al. MRS Proceedings,2015,1766,53.
11 Villafuerte J. Welding Journal (Miami, Fla),2000,79(10),45.
12 Kim N H, Kim H J, Kim H S, et al. Journal of Welding and Joining,2004,22(4),35.
13 Timár I J S. Stahlbau,2013,82(9),704.
14 Jia S G, Liu P, Ren F Z, et al. Wear,2007,262(7),772.
15 Adam G, Siewert T A, Quinn T P, et al. Welding Journal,2001,80(12),37.
16 Ding T, Chen G X, Bu J, et al. Wear,2011,271(9),1629.
17 Villafuerte J. Welding Journal,1999,78(12),29.
18 Yang Z, Zhang Y, Zhao F, et al. Tribology International,2016,94,71.
19 Ding T, Chen G X, Xiong Z G, et al. Applied Mechanics,2011,80,178.
20 Azevedo C R F, Sinatora A. Engineering Failure Analysis,2004,11(6),829.
21 Bouchoucha A, Chekroud S, Paulmier D. Applied Surface Science,2004,223(4),330.
22 Dong L, Chen G X, Zhu M H, et al. Wear,2007,263(1),598.
23 Ma X C, He G Q, He D H, et al. Wear,2008,265(7),1087.
24 Dong L, Chen G X, Zhou Z R. Lubrication Engineering,2009,34(7),102(in Chinese).
董霖,陈光雄,周仲荣.润滑与密封,2009,34(7),102.
25 Mcintosh C, Mendez P F. Welding Journal,2017,96(4),121S.
26 Zhang G, Goett G, Kozakov R, et al. Journal of Physics D-Applied Phy-sics,2019,52(8),085201.
27 Mcintosh C, Mendez P F. Welding Journal,2017,96(9),354S.
28 Shi G, Chen Z H, Shan M, et al. Edinburgh: Heriot-Watt Univ,2016,293.
29 Yin J, Zhang H B, Xiong X, et al. Progress in Natural Science-Materials International,2017,27,192.
30 Chen G X, Yang H J, Zhang W H, et al. Tribology International,2013,61,88.
31 Yasar I, Canakci A, Arslan F. Tribology International,2007,40(9),1381.
32 Chen Z H, Tang B, Shi G, et al. Electrical Engineering Magazing,2015,30(17),154(in Chinese).
陈忠华,唐博,时光,等.电工技术学报,2015,30(17),154.
33 Yang H J, Chen G X, Zhang S D, et al. Proceedings of the Institution of Mechanical Engineers Part J-Journal of Engineering Tribology,2012,226(8),722.
34 Zhang Y Y, Zhang Y Z, Song C F. Materials,2018,11,15.
35 Zhang Y Y, Zhang Y Z, Du S M, et al. Tribology International,2018,123,256.
36 Guo F Y, Chen M Y, Chen Z H, et al. Electrical Engineering Magazine,2018,33(13),2982(in Chinese).
郭凤仪,陈明阳,陈忠华,等.电工技术学报,2018,33(13),2982.
37 Ding T, Yuan J, Fan Y J, et al. In: 3rd International Conference on Applied Mechanics and Mechanical Automation. Shanghai,2017,pp.138.
38 Tao D, Wen J X, Yu M L, et al. Applied Mechanics,2013,4,423.
39 Wang Z, Guo F, Chen Z, et al. In: 2013 IEEE 59th Holm Conference on Electrical Contacts. Holm,2013,pp.1.
40 Kubota Y, Nagasaka S, Miyauchi T, et al. Wear,2013,302(1),1492.
41 Liu P, Juanhua S U, Dong Q, et al. Journal of Materials Science & Technology,2005,21(4),475.
42 Zhao Z F. Study on the performance of high strength and high conductivity Cu-Cr-Zr alloy. Master's Thesis, Shenyang University, China,2018(in Chinese).
赵志方.高强度高导电Cu-Cr-Zr合金性能研究.硕士学位论文,沈阳大学,2018.
43 Wang Q, Zhou X, Zhang X, et al. In: 2014 International Conference on Computer Science and Electronic Technology (ICCSET 2014). Shenzhen,2015,pp.140.
44 Qi W X, Tu J P, Yang Y Z, et al. Tribology,2001,21(6),405(in Chinese).
齐卫笑,涂江平,杨友志,等.摩擦学学报,2001,21(6),405.
45 Purcek G, Yanar H, Saray O, et al. Wear,2014,311(1),149.
46 Lin G B, Wang Z D, Zhang M K, et al. Materials Science and Technology,2013,27(5),966.
47 Mu S G, Guo F A, Tang Y Q, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2008,475(1),235.
48 Pan Z Y, Chen J B, Li J F. Transactions of Nonferrous Metals Society of China,2015,25(4),1206.
49 Liu Y, Liu P, Tian B H, et al. Heat Treatmen of Metals,2005,30(3),235(in Chinese).
刘勇,刘平,田保红,等.金属热处理,2005,30(3),235.
50 Goethel S, Buerkner G, Mayr P. Welding in the World,2013,57(6),879.
51 Han J H, Lee J S, Kim S H, et al. Welding in the World,2017,61(6),1181.
52 Wang Y A, Li J X, Yan Y, et al. Applied Surface Science,2012,258(7),2362.
53 Wu G N, Wu J, Wei W F, et al. Energies,2018,11,13.
54 Moyses E R D, Mendes T A, Bailoni D, et al. Soldagem & Inspecao,2018,23(1),83.
55 Belikov A B. Welding International,2008,22(6),361.
56 Miyazaki K. Welding International,2008,22(8),491.
57 Konishi Y. U.S. patent, US7485829B2,2009.
58 Lu Z G. Study on activating wire of CO2 gas shielding arc welding. Master's Thesis, Tianjin University, China,2008(in Chinese).
卢志国.CO2气体保护焊活性涂层焊丝的研究.硕士学位论文,天津大学,2008.
59 Jiang H H. Study on aluminum-deoxidized wire for CO2 gas shielding arc welding. Master's Thesis, Tianjin University, China,2012(in Chinese).
蒋欢欢.CO2气体保护焊铝脱氧焊丝的研究.硕士学位论文,天津大学,2012.
60 Cao X T. Effect of surface treatment on wear and rust resistance of contact tube against non-copper coated solid wires. Master's Thesis, Beijing University of Technology, China,2017(in Chinese).
曹晓涛.表面处理对导电嘴与无镀铜实芯焊丝摩擦磨损性能的影响.硕士学位论文,北京工业大学,2017.
61 Wan Q, Li Z X, Zhang T L, et al. Transactions of the China Welding Institution,2019(2),110(in Chinese).
万千,栗卓新,张天理,等.焊接学报,2019(2),110.
62 Zhang W Q, Li H T. Metal products,2015,41(6),33(in Chinese).
张文倩,李鸿涛.金属制品,2015,41(6),33.
63 Li W H.中国专利,CN1788921A.2006.
[1] 浦娟, 谢依汝, 胡庆贤, 胥国祥, 朱蔡琛. 单缆式焊丝GMAW电弧物理行为的数值模拟[J]. 材料导报, 2019, 33(4): 689-693.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed