Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (7): 114-120    https://doi.org/10.11896/j.issn.1005-023X.2017.07.018
  新材料新技术 |
燃煤烟气中单质汞的催化氧化技术研
王红妍1,2, 王宝冬1, 李俊华2, 孙琦1
1 北京低碳清洁能源研究所,北京 102209;
2 清华大学环境学院,北京 100084
Progress in Catalytic Oxidation Technology for Element Mercury in Coal-fired Flue Gas
WANG Hongyan1,2, WANG Baodong1, LI Junhua2, SUN Qi1
1 National Institute of Clean-and-Low-Carbon Energy, Beijing 102209;
2 School of Environment, Tsinghua University, Beijing 100084
下载:  全 文 ( PDF ) ( 1294KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对燃煤电厂烟气中汞的脱除问题,综述了单质汞氧化催化剂与催化氧化机理的研究现状;着重阐述了碳基、金属及金属氧化物催化剂和选择性催化还原(SCR)催化剂对单质汞的催化氧化性能,分析了活性组分、烟气条件等对各催化剂氧化单质汞性能的影响;指出异相反应是单质汞氧化的重要途径,不同催化剂、不同烟气气氛下氧化机理不同;最后结合我国燃煤电厂的现状,提出深入研究单质汞的催化氧化机理,进一步提高SCR催化剂的催化氧化单质汞活性、抗硫性及稳定性将是燃煤烟气汞污染控制技术的重点发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王红妍
王宝冬
李俊华
孙琦
关键词:  燃煤烟气    催化  氧化  机理  催化剂    
Abstract: Aiming at the problem of Hg0 removal from the flue gas of coal-fired power plant, the catalysts of mercury oxidation and catalytic mechanisms are summarized in this work. The catalytic oxidation performance of carbon-based materials, metals and metal oxides and selective catalytic reduction (SCR) catalysts are reviewed. The influence of active component, flue gas condition on mercury oxidation performance of catalysts is briefly discussed. Heterogeneous reaction is an important way of promoting the oxidation of elemental mercury. The oxidation mechanisms varied with catalysts or atmosphere. Finally, taking into consideration the situation of coal-fired power plants in China, future research directions including developing effective and stable SCR catalysts with a low SO2/SO3 conversion rate are proposed. The mechanism of Hg0 oxidation need to be better understood as well.
Key words:  coal-fired flue gas    mercury    catalysis    oxidation    mechanisms    catalyst
               出版日期:  2017-04-10      发布日期:  2018-05-08
ZTFLH:  X511  
基金资助: 青年千人启动经费(GB9300120001)
通讯作者:  王宝冬,男,1978年生,教授级高级工程师,主要从事电厂污染物控制方面的研究 E-mail:wangbaodong@nicenergy.com   
作者简介:  王红妍:女,1986年生,博士,主要从事大气污染控制研究
引用本文:    
王红妍, 王宝冬, 李俊华, 孙琦. 燃煤烟气中单质汞的催化氧化技术研[J]. 《材料导报》期刊社, 2017, 31(7): 114-120.
WANG Hongyan, WANG Baodong, LI Junhua, SUN Qi. Progress in Catalytic Oxidation Technology for Element Mercury in Coal-fired Flue Gas. Materials Reports, 2017, 31(7): 114-120.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.07.018  或          http://www.mater-rep.com/CN/Y2017/V31/I7/114
1 Golding G R, Kelly C A, Sparling R, et al. Evaluation of mercury toxicity as a predictor of mercury bioavailability[J]. Environ Sci Technol,2007,41(16):5685.
2 Hu Y, Cheng H. Control of mercury emissions from stationary coal combustion sources in China: Current status and recommendations[J]. Environ Poll, 2016,218:1209.
3 Mercury and air toxics standards[S]. https://www.epa.gov/mats.
4 European Commission. The properties of mercury emitted from coal fired power plants[OL]. http://ec.europa.eu/environment/chemicals/mercury/index_en.htm.
5 环境保护部.GB 13223-2011火电厂大气污染物排放标准[S].北京:中国标准出版社,2012.
6 Pacyna E G, Pacyna J M, Sundseth K, et al. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020[J]. Atmospheric Environ,2010,44(20):2487.
7 Tan Y, Mortazavi R, et al. An investigation of mercury distribution and speciation during coal combustion[J]. Fuel,2004,83(16):2229.
8 Wan Q. Removal of elemental mercury over V/Ce loaded catalysts in the flue gas of coal-fired power plants[D]. Beijing: Tsinghua University,2011(in Chinese).
万奇. V/Ce负载型催化剂脱除燃煤电厂烟气中元素汞的研究[D]. 北京: 清华大学,2011.
9 Tan Z Q, et al. Removal of elemental mercury by coconut shell carbon[J]. Chinese J Environ Eng,2015,9(12):5992(in Chinese).
谭增强, 牛国平, 陈晓文,等. 椰壳碳基吸附剂的脱汞特性[J]. 环境工程学报,2015,9(12):5992.
10 Wang J W, Liu R Q. Hg0 removal by an activated coke-supported MnO2 catalyst[J]. Acta Scientiae Circumstantiae,2012,32(9):2261(in Chinese).
王钧伟, 刘瑞卿. 活性焦负载MnO2对气态Hg0的吸附脱除研究[J]. 环境科学学报,2012,32(9):2261.
11 Hu C X,Zhou J S,Luo Z Y,et al. Effect of oxidation treatment on the adsorption and the stability of mercury on activated carbon[J]. J Environ Sci,2006, 18(6):1161.
12 Mei Z, Shen Z, Zhao Q, et al. Removal and recovery of gas-phase element mercury by metal oxide-loaded activated carbon[J]. J Ha-zard Mater,2008, 152(2):721.
13 Tian L H, Li C T, Li Q, et al. Removal of elemental mercury by activated carbon impregnated with CeO2[J]. Fuel,2009,88(9):1687.
14 Wang J W, et al. Gas-phase elemental mercury capture by a V2O5/AC catalyst[J]. Fuel Processing Technol,2010,91(6):676.
15 Wang X Q, Wang P, Ning P, et al. Adsorption of gaseous elemental mercury with activated carbon impregnated with ferric chloride[J]. RSC Adv,2015, 5(32):24899.
16 Niu L L, Xu C, Liu W P. Overviews of mercury emission from coal combustion in china and technology of mercury-removing by activated carbon[J]. Environ Sci Technol,2012,35(9):45(in Chinese).
牛丽丽, 徐超, 刘维屏. 中国燃煤汞排放及活性炭脱汞技术[J]. 环境科学与技术,2012,35(9):45.
17 Tao S, Li C, Fan X P, et al. Activated coke impregnated with ce-rium chloride used for elemental mercury removal from simulated flue gas[J]. Chem Eng J,2012,210:547.
18 Tong L, Xu W Q, Qi H, et al. Enhanced effect of O/N groups on the Hg0 removal efficiency over the HNO3-modified activated carbon[J]. Acta Phys Chim Sin,2015,31(3):512(in Chinese).
佟莉, 徐文青, 亓昊, 等. 硝酸改性活性炭上氧/氮官能团对脱汞性能的促进作用[J]. 物理化学学报,2015,31(3):512.
19 Zhao B, Yi H H, et al. Copper modified activated coke for mercury removal from coal-fired flue gas[J]. Chem Eng J,2015,286:585.
20 Lee T G, Hyun J E. Structural effect of the in situ generated titania on its ability to oxidize and capture the gas-phase elemental mercury.[J]. Chemosphere, 2006,62(1):26.
21 Cho J H, Eom Y, Jeon S H, et al. A pilot-scale TiO2 photocatalytic system for removing gas-phase elemental mercury at Hg-emitting facilities[J]. J Ind Eng Chem,2013,19(1):144.
22 Yuan Y, Zhao Y, Li H, et al. Electrospun metal oxide-TiO2 nanofibers for elemental mercury removal from flue gas[J]. J Hazard Mater,2012, 227-228(5):427.
23 Yuan Y, Zhang J, Li H, et al. Simultaneous removal of SO2, NO and mercury using TiO2-aluminum silicate fiber by photocatalysis[J]. Chem Eng J,2012, 192(2):21.
24 Jeon S H, Eom Y, Tai G L. Photocatalytic oxidation of gas-phase elemental mercury by nanotitanosilicate fibers[J]. Chemosphere,2008,71(5):969.
25 Wang H, Zhou S, Xiao L, et al. Titania nanotubes-A unique photocatalyst and adsorbent for elemental mercury removal[J]. Catal Today,2011, 175(1):202.
26 Kamata H, Ueno S I, Sato N, et al. Mercury oxidation by hydrochloric acid over TiO2 supported metal oxide catalysts in coal combustion flue gas[J]. Fuel Processing Technol,2009,90(7-8):947.
27 Lee W, Bae G N. Removal of elemental mercury Hg0 by nanosized V2O5/TiO2 catalysts[J]. Environ Sci Technol,2009,43(5):1522.
28 Xu W Q, Wang H R, Zhou X, et al. CuO/TiO2 catalysts for gas-phase Hg0 catalytic oxidation[J]. Chem Eng J,2014,243:380.
29 Liu Y, Wang Y J, Wang H Q, et al. Catalytic oxidation of gas-phase mercury over Co/TiO2 catalysts prepared by sol-gel method[J]. Catal Commun,2011, 12(14):1291.
30 Xu W Q, et al. Effect of flue gas components on Hg0 oxidation over Fe/HZSM-5 catalyst[J]. Ind Eng Chem Res,2015,54(1):146.
31 Chen L, Li C T, Gao Z, et al. Experimental study of removing elemental mercury from flue gas by MnOx/HZSM-5[J]. China Environ Sci,2010,30(8): 1026(in Chinese).
陈玲, 李彩亭, 高招, 等. MnOx/HZSM-5去除烟气中元素态汞的实验研究[J]. 中国环境科学,2010,30(8):1026.
32 Li H L, Wu C Y, Li Y, et al. Superior activity of MnOx-CeO2/TiO2 catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures[J]. Appl Catal B: Environ,2012,111-112:381.
33 Schwaemmle T, Heidel B, Brechtel K, et al. Study of the effect of newly developed mercury oxidation catalysts on the DeNOx-activity and SO2-SO3-conversion[J]. Fuel,2012,101:179.
34 Schw?mmle T, Bertsche F, Hartung A, et al. Influence of geometrical parameters of honeycomb commercial SCR-DeNOx-catalysts on DeNOx-activity, mercury oxidation and SO2/SO3-conversion[J]. Chem Eng J,2013,222:274.
35 Wang P Y, Su S, Xiang J, et al. Catalytic oxidation of Hg0 by MnOx-CeO2/γ-Al2O3 catalyst at low temperatures[J]. Chemosphere,2014,101:49.
36 Li J F, Yan N Q, Qu Z, et al. Catalytic oxidation of elemental mercury over the modified catalyst Mn/α-Al2O3 at lower temperatures[J]. Environ Sci Technol,2009,44(1):426.
37 Li H L, Zhang J Y, Wu C Y, et al. Experimental and mechanism study on mercury catalytic oxidation over cerium based catalysts[J]. J Eng Thermophysics, 2012,33(7):1251(in Chinese).
李海龙, 张军营, Wu Chang-Yu, 等. 铈基催化剂催化氧化燃煤烟气中汞的实验及机理研究[J]. 工程热物理学报,2012,33(7):1251.
38 Wan Q, Duan L, He K, et al. Removal of gaseous elemental mercury over a CeO2-WO3/TiO2 nanocomposite in simulated coal-fired flue gas[J]. Chem Eng J,2011,170(2-3):512.
39 Xu H, Zan Q, Zong C, et al. Catalytic oxidation and adsorption of Hg0 over low-temperature NH3-SCR LaMnO3 perovskite oxide from flue gas[J]. Appl Catal B:Environ,2015,186:30.
40 Zhou Z, Liu X, Bo Z, et al. Elemental mercury oxidation over manganese-based perovskite-type catalyst at low temperature[J]. Chem Eng J,2015, 288:701.
41 Xu H, Qu Z, et al. Enhancement of heterogeneous oxidation and adsorption of Hg0 in a wide temperature window using SnO2 supported LaMnO3 perovskite oxide[J]. Chem Eng J,2016,292:123.
42 Dranga B A, Lazar L, et al. Oxidation catalysts for elemental mercury in flue gases-A review[J]. Focus Catalysts,2012,2(1):139.
43 Presto A A, Granite E J. Noble metal catalysts for mercury oxidation in utility flue gas: Gld, palladium and platinum formulations[J]. Platinum Metals Rev,2008,52(3):144.
44 Hou W H, Zhou J S, Yu C J, et al. Pd/Al2O3 sorbents for elemental mercury capture at high temperatures in syngas[J]. Ind Eng Chem Res, 2014,53(23):9909.
45 Zhao Y X, et al. Application of gold catalyst for mercury oxidation by chlorine[J]. Environ Sci Technol,2006,40(5):1603.
46 Yan N Q, Chen W M, Chen J, et al. Significance of RuO2 modified SCR catalyst for elemental mercury oxidation in coal-fired flue gas[J]. Environ Sci Technol,2011,45(13):5725 .
47 He S, Zhou J S, et al. Mercury oxidation over a vanadia-based selective catalytic reduction catalyst[J]. Energy Fuels,2009,23(1):253.
48 Li J R, He C, Shang X S, et al. Oxidation efficiency of elemental mercury in flue gas by SCR De-NOx catalysts[J].J Fuel Chem Technol,2012,40(2):241(in Chinese).
李建荣,何炽,商雪松,等. SCR脱硝催化剂对烟气中零价汞的氧化效率研究[J]. 燃料化学学报,2012,40(2):241.
49 Chen J, Yan N Q, Qu Z, et al. Preliminary study on mercury conversion performance of modified SCR catalyst[J]. Environ Sci Technol,2013,36(5):86(in Chinese).
陈杰, 晏乃强, 瞿赞, 等. 强化SCR脱硝催化剂转化零价汞的初步研究[J]. 环境科学与技术,2013,36(5):86.
50 Zhao L, He Q S, Li L, et al. Research on the catalytic oxidation of Hg0 by modified SCR catalysts[J]. J Fuel Chem Technol,2015,43(5):628(in Chinese).
赵莉, 何青松, 李琳, 等. 改性SCR催化剂对Hg0催化氧化性能的研究[J]. 燃料化学学报,2015,43(5):628.
51 Presto A A, Granite E J. Survey of catalysts for oxidation of mercury in flue gas[J]. Environ Sci Technol,2006,40(18):5601.
52 Sui H, Zhang M Z, Dong Y, et al. Research progress of adsorption and oxidation mechanism of elemental mercury from coal-fired flue gas[J]. Chem Ind Eng Prog,2014,33(6):1582(in Chinese).
睢辉, 张梦泽, 董勇, 等. 燃煤烟气中单质汞吸附与氧化机理研究进展[J]. 化工进展,2014,33(6):1582.
53 Gao W, Liu Q, Wu C Y, et al. Kinetics of mercury oxidation in the presence of hydrochloric acid and oxygen over a commercial SCR ca-talyst[J]. Chem Eng J,2013,220:53.
54 Senior C L. Oxidation of mercury across selective catalytic reduction catalysts in coal-fired power plants[J]. J Air Waste Management Association,2006, 56(1):23.
55 Li H L, Wu C Y, Li Y, et al. CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas[J]. Environ Sci Technol, 2011,45(17):7394.
56 Zhao L K, Li C T, Zhang J, et al. Promotional effect of CeO2 modified support on V2O5-WO3/TiO2 catalyst for elemental mercury oxidation in simulated coal-fired flue gas[J]. Fuel,2015,153:361.
57 Usberti N, Clave S A, et al. Kinetics of Hg0 oxidation over a V2O5/MoO3/TiO2 catalyst: Experimental and modelling study under DeNOX inactive conditions[J]. Appl Catal B:Environ,2016,193:121.
58 Eom Y, et al. Heterogeneous mercury reaction on a selective cataly-tic reduction (SCR) catalyst[J]. Catal Lett,2008,121(3):219.
59 Kamata H, Ueno S I, et al. Mercury oxidation by hydrochloric acid over a VOx/TiO2 catalyst[J]. Catal Commun,2008,9(14):244.
60 Cao Y, Gao Z Y, Zhu J H, et al. Impacts of halogen additions on mercury oxidation in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal[J]. Environ Sci Technol,2008,42(1):256.
61 Tao L, Zhang X N, Li C T, et al. Oxidation and capture of elemental mercury over SCR catalyst in simulated flue gas[J]. Chinese J Environ Eng,2015,9(6):2925(in Chinese).
陶莉,张旭楠,李彩亭,等. 选择性催化还原催化剂氧化脱除烟气中单质汞[J]. 环境工程学报,2015,9(6):2925.
62 Kamata H, et al. Mercury oxidation over the V2O5(WO3)/TiO2 commercial SCR catalyst[J]. Ind Eng Chem Res,2008,47(21):8136.
63 Zhao L K, Li C T, Zhang X N, et al. A review on oxidation of elemental mercury from coal-fired flue gas with selective catalytic reduction catalysts[J]. Catal Sci Technol,2015,5(7):3459.
64 Stolle R, Koeser H, Gutberlet H. Oxidation and reduction of mercury by SCR DeNOx catalysts under flue gas conditions in coal fired power plants[J]. Appl Catal B: Environ,2014,144:486.
65 Li Y, Murphy P D, Wu C Y, et al. Development of silica/vanadia/titania catalysts for removal of elemental mercury from coal-combustion flue gas[J]. Environ Sci Technol,2008,42(14):5304.
66 Li H L. Catalytic oxidation of elemental mercury over novel SCR catalysts[D]. Wuhan: Huazhong University of Sci Technol,2011(in Chinese).
李海龙. 新型SCR催化剂对汞的催化氧化机制研究[D]. 武汉: 华中科技大学,2011.
67 Ye Z, et al. Impacts of acid gases on mercury oxidation across SCR catalyst[J]. Fuel Processing Technol,2007,88(10):929.
68 Yu J P. Experimental study on mercury oxidation of modified SCR catalyst[D]. Hangzhou: Zhejiang University,2015(in Chinese).
俞晋频. 改性SCR催化剂汞氧化试验研究[D]. 杭州: 浙江大学,2015.
[1] 郭继鹏, 王敬锋, 林琳, 何丹农. 不同形貌的g-C3N4的制备研究进展[J]. 材料导报, 2019, 33(z1): 1-7.
[2] 张笑, 宋武林, 卢照, 曾大文, 谢长生. 纳米二氧化钛分散液稳定性的研究进展[J]. 材料导报, 2019, 33(z1): 16-21.
[3] 展红全, 邓册, 吴传琦, 李小红, 谢志鹏, 汪长安. 新颖十二面体钛酸钡纳米晶体的水热生长机理[J]. 材料导报, 2019, 33(z1): 98-101.
[4] 潘云, 吴承仁, 陈绍维, 伍小波. 氧还原催化材料与催化机理及活性位点的研究进展[J]. 材料导报, 2019, 33(z1): 41-44.
[5] 胡厅, 万红, 华叶, 龚瑾瑜, 陈兴宇. 石墨表面TiC梯度涂层的制备及结构调制[J]. 材料导报, 2019, 33(z1): 74-77.
[6] 钱鑫, 邓丽芳, 王鲁丰, 单锐, 袁浩然. 二氧化碳电化学还原技术研究进展[J]. 材料导报, 2019, 33(z1): 102-107.
[7] 刘珊, 冯婷, 田薪成, 刘丹荣, 张悦, 李宇亮. 海藻酸钠-水合二氧化锰功能球对Cu(Ⅱ)的吸附性能研究[J]. 材料导报, 2019, 33(z1): 136-140.
[8] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[9] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[10] 彭寿, 赵凤阳, 曹欣, 单传丽. 澄清剂氧化锡对TFT-LCD基板玻璃澄清效果的影响[J]. 材料导报, 2019, 33(z1): 195-198.
[11] 孙福洋, 杨旭, 曹博. SRB+IOB对X100管线钢在鹰潭土壤模拟溶液中腐蚀行为的影响[J]. 材料导报, 2019, 33(z1): 373-376.
[12] 李鑫, 王欢, 刘立业, 张吉波, 邱俊. 不同方法制备的乙醇胺还原胺化催化剂及其表征[J]. 材料导报, 2019, 33(z1): 466-469.
[13] 郭建业, 赵英民, 张丽娟, 苏力军, 李文静, 杨洁颖. 高温可重复使用二氧化硅气凝胶复合材料性能研究[J]. 材料导报, 2019, 33(z1): 202-205.
[14] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[15] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed