Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (7): 88-93    https://doi.org/10.11896/j.issn.1005-023X.2017.07.014
  材料综述 |
应用等径角挤压(ECAP)技术的金属粉末固结和碎屑回收研究现状*
施麒,马越,毛贺,赖金涛
绍兴文理学院机械与电气工程学院,绍兴 312000
Metal Powder Consolidation and Chip Recycling Using Equal Channel Angular Pressing: A Review of Current Status
SHI Qi, MA Yue, MAO He, LAI Jintao
Department of Mechanical and Electrical Engineering, Shaoxing University, Shaoxing 312000
下载:  全 文 ( PDF ) ( 1843KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 等径角挤压(ECAP)技术以纯剪切的形式在不改变横截面形状的条件下对材料引入大剪切应变,是一项极具发展前景的大塑性变形技术。对于ECAP的研究通常集中在晶粒细化方面,然而近年来ECAP技术在其他领域的应用已逐渐增多,并取得了很大进展。概述了ECAP的工艺原理,详细介绍了ECAP技术在金属粉末固结和碎屑回收方面的研究现状,着重探讨了国内外学者对此项技术的研究热点和不同改进方案,最后基于ECAP技术的局限性对利用该技术实现金属粉末固结和碎屑回收提出了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
施麒
马越
毛贺
赖金涛
关键词:  等径角挤压  粉末固结  碎屑回收    
Abstract: As a promising severe plastic deformation (SPD) technique, equal channel angular pressing (ECAP) imposes large shear strain into materials without changing the cross-section shape. Despite of considerable investigations concentrating on grain refinement effect of ECAP, this new emerging technique has been increasingly applied in other fields, and significant progresses have been achieved.This review outlines the working principle of ECAP, summarizes the state of art of metal powder consolidation and chip recycling through ECAP process, makes a vivid description over the corresponding research highlights and different modification strategies of domestic and international researchers, and ends in a limitation-based development prospect in this field.
Key words:  equal channel angular pressing    powder consolidation    chip recycling
               出版日期:  2017-04-10      发布日期:  2018-05-08
ZTFLH:  TG376  
基金资助: *国家自然科学基金青年科学基金项目(51605303);绍兴文理学院校级科研项目(2016LG1007)
作者简介:  施麒:男,1987年生,博士,讲师,主要从事金属加工和微观结构表征研究E-mail:shiq-1987@hotmail.com
引用本文:    
施麒,马越,毛贺,赖金涛. 应用等径角挤压(ECAP)技术的金属粉末固结和碎屑回收研究现状*[J]. 《材料导报》期刊社, 2017, 31(7): 88-93.
SHI Qi, MA Yue, MAO He, LAI Jintao. Metal Powder Consolidation and Chip Recycling Using Equal Channel Angular Pressing: A Review of Current Status. Materials Reports, 2017, 31(7): 88-93.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.07.014  或          http://www.mater-rep.com/CN/Y2017/V31/I7/88
1 Segal V, Reznikov V, Drobyshevskii A, et al. Plastic working of metals by simple shear[J]. Russ Met,1981(1):99.
2 Wei W, Chen G, Wang J, et al. Microstructure and tensile properties of ultrafine grained copper processed by equal-channel angular pressing[J]. Rare Metals,2006,25(25):697.
3 Dobatkin S V, Szpunar J A, Zhilyaev A P, et al. Effect of the route and strain of equal-channel angular pressing on structure and properties of oxygen-free copper[J]. Mater Sci Eng A,2007,462(1):132.
4 Wang Jianmin, Xu Xiaojing, Shi Fengjian, et al. Investigation of ultra-fine grain copper by equal channel angular pressing[J]. Hot Working Technol,2004(7):6(in Chinese).
汪建敏, 许晓静, 石凤健, 等. 等径角挤压获得超细晶铜的研究[J]. 热加工工艺,2004(7):6.
5 Yun Xining, Song Baoyun, Chen Li. Ultra-fine grain copper prepared by continuous equal channel angular pressing[J]. Chin J Nonferrous Metals,2006,16(9):1563(in Chinese).
运新兵, 宋宝韫, 陈莉. 连续等径角挤压制备超细晶铜[J]. 中国有色金属学报,2006,16(9):1563.
6 Horita Z, Fujinami T, et al. Equal-channel angular pressing of commercial aluminum alloys: Grain refinement, thermal stability and tensile properties[J]. Metall Mater Trans 2000,31(3):691.
7 Horita Z, Fujinami T, Nemoto M, et al. Improvement of mechanical properties for Al alloys using equal-channel angular pressing[J]. J Mater Processing Technol,2001,117(3):288.
8 Li Yongxia, Zhang Yonggang, Chen Changqi. Effect of equal channel angular pressing on microstructure and mechanical properties of high pure aluminum[J]. J Aeronautical Mater,2001, 21(3):33(in Chinese).
李永霞, 张永刚, 陈昌麒. 等截面通道角形挤压对高纯铝微观组织及力学性能的影响[J]. 航空材料学报,2001,21(3):33.
9 Li Qiang, Lai Zuhan. Microstructural changes in high purity alumi-nium subjected to equal channel angular extrusion[J]. Ordnance Mater Sci Eng,2001,24(6):33(in Chinese).
李强, 赖祖涵. 高纯铝等通道转角挤压引起的微观组织变化[J]. 兵器材料科学与工程, 2001,24(6):33.
10 Kim W J, An C W, Kim Y S, et al. Mechanical properties and microstructures of an AZ61 Mg Alloy produced by equal channel angular pressing[J]. Scr Mater,2002,47(1):39.
11 Kim W J, Hong S I, Kim Y S, et al. Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing[J]. Acta Mater, 2003,51(11):3293.
12 Kulyasova O, et al. Microstructure and fatigue properties of the ultrafine-grained AM60 magnesium alloy processed by equal-channel angular pressing[J]. Mater Sci Eng A,2009,503(1-2):176.
13 Jiang Jufu, Luo Shoujing. Effect of equal channel angular extrusion on the mechanical properties of AZ91D magnesium alloy[J]. Hot Working Technol,2004(8):3(in Chinese).
姜巨福, 罗守靖. 等径角挤压对AZ91D镁合金力学性能的影响[J]. 热加工工艺,2004(8):3.
14 Liu Ying, Chen Weiping, et al. Structure and mecha-nical property of the magnesium alloy prepared by the equal-channel angular pres-sing via different processing routes[J]. J South China University of Technology: Nat Sci Ed,2004,32(10):10(in Chinese).
刘英, 陈维平, 等. 不同路径等通道转角挤压镁合金的结构与力学性能[J]. 华南理工大学学报:自然科学版,2004,32(10):10.
15 Li Y, Ng H P, Jung H D, et al. Enhancement of mechanical properties of grade 4 titanium by equal channel angular pressing with billet encapsulation[J]. Mater Lett,2014, 114(1):144.
16 Figueiredo R B, et al. Improving the fatigue behavior of dental implants through processing commercial purity titanium by equal-channel angular pressing[J]. Mater Sci Eng A,2014,619:312.
17 Zhao Y, Guo H, Fu M W, et al. Fabrication of bulk ultrafine grained titanium alloy via equal channel angular pressing based thermomechanical treatment[J]. Mater Des,2013,46(4):889.
18 Zhao Y, Guo H, Shi Z, et al. Microstructure evolution of TA15 titanium alloy subjected to equal channel angular pressing and subsequent annealing at various temperatures[J]. J Mater Processing Technol,2011,211(8):1364.
19 Liu Xiaoyan, Zhao Xicheng, Yang Xirong, et al. Constitutive relationship of compression deformation of ultrafine-grained commercially pure titanium processed by ECAP at room temperature with 120°die[J]. Chin J Nonferrous Metals,2012,22(5):1292(in Chinese).
刘晓燕, 赵西成, 杨西荣, 等. 120°模具室温ECAP制备工业纯钛的压缩变形本构关系[J]. 中国有色金属学报,2012,22(5):1292.
20 Yang Xirong, Zhao Xicheng, Fu Wenjie. Deformed microstructures and mechanical properties of CP-Ti processed by multi-pass ECAP at room temperature[J]. Rare Metal Mater Eng,2009,38(6):955(in Chinese).
杨西荣, 赵西成, 付文杰. 工业纯钛在120°模具中的多道次ECAP室温变形组织与性能[J]. 稀有金属材料与工程,2009,38(6):955.
21 Fu Wenjie. Microstructure and properties of CP-Ti processed by ECAP at room termperature[D]. Xi’an: Xi’an University of Architecture and Technology,2008(in Chinese).
付文杰. 工业纯钛室温ECAP变形工艺及组织性能研究[D]. 西安: 西安建筑科技大学, 2008.
22 Nakashima K, Horita Z, Nemoto M, et al. Development of a multi-pass facility for equal-channel angular pressing to high total strains[J]. Mater Sci Eng A,2000,281(1-2):82.
23 Xiang S, Matsuki K, Takatsuji N, et al. Microstructure and mechanical properties of PM 2024Al-3Fe-5Ni alloy consolidated by a new process, equal channel angular pressing[J]. J Mater Sci Lett,1997,16(21):1725.
24 Matsuki K, Aida T, et al. Microstructural characteristics and superplastic-like behavior in aluminum powder alloy consolidated by equal-channel angular pressing[J]. Acta Mater,2000,48(10):2625.
25 Xia K, Wu X. Back pressure equal channel angular consolidation of pure Al particles[J]. Scr Mater,2005,53(11):1225.
26 Xia K, Wu X, Honma T, et al. Ultrafine pure aluminium through back pressure equal channel angular consolidation (BP-ECAC) of particles[J]. J Mater Sci,2007,42(5):1551.
27 Cai C, Song B, Xue P, et al. A novel near α-Ti alloy prepared by hot isostatic pressing: Microstructure evolution mechanism and high temperature tensile properties[J]. Mater Des, 2016,106:371.
28 Cai C, Song B, Xue P, et al. Effect of hot isostatic pressing procedure on performance of Ti6Al4V: Surface qualities, microstructure and mechanical properties[J]. J Alloys Compd, 2016,686:55.
29 Cai C, Song B, et al. In-situ integrated fabrication of Ti-Ni coating during hot isostatic pressing of Ti6Al4V parts: Microstructure and tribological behavior[J]. Surf Coat Technol,2015,280:194.
30 Zhou S, Song B, Xue P, et al. Numerical simulation and experimental investigation on densification, shape deformation, and stress distribution of Ti6Al4V compacts during hot isostatic pressing[J]. Int J Adv Manuf Technol,2017,88:19.
31 Xu L, Guo R, Bai C, et al. Effect of hot isostatic pressing conditions and cooling rate on microstructure and properties of Ti-6Al-4V alloy from atomized powder[J]. J Mater Sci Technol,2014,30(12):1289.
32 Lapovok R, Tomus D, Muddle B C. Low-temperature compaction of Ti-6Al-4V powder using equal channel angular extrusion with back pressure[J]. Mater Sci Eng A,2008,490(1):171.
33 Haase C, Lapovok R, Ng H P, et al. Production of Ti-6Al-4V billet through compaction of blended elemental powders by equal-channel angular pressing[J]. Mater Sci Eng A,2012, 550(550):263.
34 Paydar M H, Reihanian M, Bagherpour E, et al. Consolidation of Al particles through forward extrusion-equal channel angular pres-sing (FE-ECAP)[J]. Mater Lett,2008, 62(17-18):3266.
35 Paydar M H, Reihanian M, Bagherpour E, et al. Equal channel angular pressing-forward extrusion (ECAP-FE) consolidation of Al particles[J]. Mater Des,2009,30(3):429.
36 Wang X X, et al. Equal channel angular pressing and torsion of pure Al powder in tubes[J]. Adv Mater Res,2010,97-101:1109.
37 Wang X X, Ping L I, Xue K M, et al. Microstructure characteristics and mechanical properties on consolidation of pure Al particles through equal channel angular pressing and torsion[J]. J Aeronautical Mater,2013,33(2):13.
38 Wang X X, Min H E, Zhu Z, et al. Influence of twist extrusion process on consolidation of pure aluminum powder in tubes by equal channel angular pressing and torsion[J]. Trans Nonferrous Metals Soc China,2015,25(7):2122.
39 Ping L I, Xue K M, Wang X X, et al. Refinement and consolidation of pure Al particles by equal channel angular pressing and torsion[J]. Trans Nonferrous Metals Soc China,2014, 24(5):1289.
40 Li Ping, Wang Xiaoxi, Xue Kemin, et al. Microstructure of pure Al powder consolidation using equal channel angular pressing and torsion after single pass[J]. Chin J Nonferrous Metals,2013(10):2779(in Chinese).
李萍, 王晓溪, 薛克敏, 等. 纯铝粉末材料单道次等径角挤扭变形的微观组织[J]. 中国有色金属学报,2013(10):2779.
41 Mani B, Jahedi M, Paydar M H. Consolidation of commercial pure aluminum powder by torsional-equal channel angular pressing (T-ECAP) at room temperature[J]. Powder Technol, 2012,219(3):1.
42 Tao Y, Zheng M Y, Xiao-Shi H U, et al. Recycling of AZ91 Mg alloy through consolidation of machined chips by extrusion and ECAP[J]. Trans Nonferrous Metals Soc China,2010,20(S2):s604.
43 Orlov D, Raab G, Lamark T T, et al. Improvement of mechanical properties of magnesium alloy ZK60 by integrated extrusion and equal channel angular pressing[J]. Universidad Complutense De Madrid,2011,9(1):1.
44 Haase M, Ben Khalifa N, Tekkaya A E, et al. Improving mechanical properties of chip-based aluminum extrudates by integrated extrusion and equal channel angular pressing (iECAP)[J]. Mater Sci Eng A,2012,539:194.
45 Luo P, Mcdonald D T, Palanisamy S, et al. Ultrafine-grained pure Ti recycled by equal channel angular pressing with high strength and good ductility[J]. J Mater Processing Technol, 2013,213(3):469.
46 Luo P, Mcdonald D T, Xu W, et al. A modified Hall-Petch relationship in ultrafine-grained titanium recycled from chips by equal channel angular pressing[J]. Scr Mater,2012, 66(10):785.
47 Luo P, Mcdonald D T, Zhu S M, et al. Analysis of microstructure and strengthening in pure titanium recycled from machining chips by equal channel angular pressing using electron backscatter diffraction[J]. Mater Sci Eng A,2012,538(3):252.
48 Luo P, Xie H, Paladugu M, et al. Recycling of titanium machining chips by severe plastic deformation consolidation[J]. J Mater Sci,2010,45(17):4606.
49 Shi Q, Tse Y Y, Higginson R L. Effects of processing parameters on relative density, microhardness and microstructure of recycled Ti-6Al-4V from machining chips produced by equal channel angular pressing[J]. Mater Sci Eng A,2016,651:248.
50 Mcdonald D T, Lui E W, et al. Achieving superior strength and ductility in Ti-6Al-4V recycled from machining chips by equal channel angular pressing[J]. Metall Mater Trans A,2014,45(45):4089.
51 Lui E W, Palanisamy S, Dargusch M S, et al. Effects of chip conditions on the solid state recycling of Ti-6Al-4V machining chips[J]. J Mater Processing Technol,2016,238:297.
52 Mcdonald D T, Luo P, Palanisamy S, et al. Ti-6Al-4V recycled from machining chips by equal channel angular pressing[J]. Key Eng Mater,2012,520:295.
[1] 薛克敏, 薄冬青, 王薄笑天, 刘梅, 李萍. 7A60铝合金ECAP过程第二相演化行为及机理[J]. 材料导报, 2018, 32(18): 3195-3198.
[2] 施 麒, Yau Yau Tse, Rebecca Higginson, 陈 峰, 陶麒鹦. 退火热处理对等径角挤压回收Ti-6Al-4V合金微观结构和显微硬度的影响[J]. 《材料导报》期刊社, 2018, 32(10): 1577-1581.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed