Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (18): 43-48    https://doi.org/10.11896/j.issn.1005-023X.2017.018.010
  材料研究 |
原位接枝聚合改性LDHs/PCL纳米复合薄膜的制备及氧气阻隔性能*
毛龙1,2, 刘跃军1,2, 白永康2, 刘小超1
1 湖南工业大学先进包装材料与技术湖南省重点实验室,株洲 412007;
2 厦门理工学院材料科学与工程学院,厦门 361024
Oxygen Barrier Properties of LDHs/PCL Nanocomposite Films Synthesized by In-situ Graft Polymerization
MAO Long1,2, LIU Yuejun1,2, BAI Yongkang2, LIU Xiaochao1
1 Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007;
2 School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024
下载:  全 文 ( PDF ) ( 1432KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以纳米层状双羟基金属氧化物(LDHs)为引发剂,通过原位聚合的方法在纳米LDHs表面接枝上了聚己内酯(PCL)分子链(LDHs-g-PCL),并将其与纯PCL采用溶液浇筑法制备出LDHs/PCL纳米复合材料,研究了LDHs-g-PCL的化学结构,纳米复合材料的结晶特性、力学性能、阻隔性能等。结果表明,成功制备出化学键合牢固的PCL包覆LDHs;随着LDHs-g-PCL的加入,复合材料的结晶度呈现出逐渐升高的趋势,但异相成核作用效率有一定程度减弱。LDHs-g-PCL的质量分数为10%时,复合材料的拉伸强度和断裂伸长率均达到最大值,相比纯PCL分别提高了31%和37%。LDHs-g-PCL的质量分数为50%时,复合材料对氧气的渗透性达到最低值,相比纯PCL降低程度高达78%,这与层状结构的LDHs显著延长氧气分子在纳米复合材料的曲折渗透路径必不可分。基于Nielsen的相对渗透理论来优化纳米复合材料的渗透模型,结果表明,LDHs/PCL纳米复合材料阻隔性能的提高不仅归结于层状LDHs发挥的阻隔效应,而且更重要的是LDHs-g-PCL加入引起的体积效应。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
毛龙
刘跃军
白永康
刘小超
关键词:  聚己内酯  层状双羟基金属氧化物  纳米复合薄膜  原位聚合  氧气阻隔性能  可降解包装材料    
Abstract: In this work, layered double hydroxides-g-poly(ε-caprolactone) (LDHs-g-PCL) were prepared by in-situ ring-opening polymerization at low LDHs loadings. Then LDHs/PCL nanocomposites were prepared by blending LDHs-g-PCL and pure PCL via solution casting method, and the nanocomposites' chemical structures were investigated. And crystallization behavior, mechanical properties and barrier properties of nanocomposites were also deeply studied. It was shown that LDHs-g-PCL were prepared successfully by in-situ polymerization. And results showed that with the increase of LDHs-g-PCL in LDHs/PCL nanocomposites, the crystallization of LDHs/PCL nanocomposites gradually increased. However, the efficiency of heterogeneous nucleation of LDHs-g-PCL decreased to a certain extent. Tensile strength and elongation at break of LDHs/PCL nanocomposites containing 10% (mass fraction) LDHs-g-PCL increased by 31% and 37%, respectively. Compared to pure PCL, the O2 permeability of LDHs/PCL nanocomposites containing 50% (mass fraction) LDHs-g-PCL was reduced by nearly 78%. And the reduction of the O2 permeability arised from the longer diffusion path that the pentrants must travel in the presence of LDHs. The relative permeability model of nanocomposites based on Nielsen's theory was optimized. According to the optimized model, the key parameters to improve the barrier properties of LDHs/PCL nanocomposites are not only the barrier effect of the LDHs (or LDHs-g-PCL) but also the bulk effect that they develop in the polymer matrix.
Key words:  poly(ε-caprolactone)    layered double hydroxides (LDHs)    nanocomposite film    in-situ polymerization    oxygen barrier property    biodegradable packaging
               出版日期:  2017-09-25      发布日期:  2018-05-08
ZTFLH:  TB324  
基金资助: 国家自然科学基金(11372108);湖南省自然科学基金(14JJ5021);湖南省研究生科研创新项目(CX2016B632);厦门理工学院高层次人才项目(YKJ14035);聚合物分子工程国家重点实验室开放课题(复旦大学) (K2017-29)
通讯作者:  刘跃军:通讯作者,1970年生,博士,教授,主要从事高分子包装材料与技术的研究 E-mail:yjliu_2005@126.com   
作者简介:  毛龙:男,1988年生,博士研究生,主要从事高分子包装材料与技术的研究 E-mail:maolong0412@163.com
引用本文:    
毛龙, 刘跃军, 白永康, 刘小超. 原位接枝聚合改性LDHs/PCL纳米复合薄膜的制备及氧气阻隔性能*[J]. 《材料导报》期刊社, 2017, 31(18): 43-48.
MAO Long, LIU Yuejun, BAI Yongkang, LIU Xiaochao. Oxygen Barrier Properties of LDHs/PCL Nanocomposite Films Synthesized by In-situ Graft Polymerization. Materials Reports, 2017, 31(18): 43-48.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.018.010  或          http://www.mater-rep.com/CN/Y2017/V31/I18/43
1 Zhang Y, Liu Q, Zhang S, et al. Gas barrier properties and mechanism of kaolin/styrene-butadiene rubber nanocomposites[J]. Appl Clay Sci, 2015,111:37.
2 Paul D R, Robeson L M. Polymer nanotechnology: Nanocomposites[J]. Polymer, 2008,49(15):3187.
3 Yi S, Yang Z, Wang S, et al. Effects of MgAlCe-CO3 layered double hydroxides on the thermal stability of PVC resin[J]. J Appl Polym Sci, 2011,119(5):2620.
4 Wang S, Huang J, Chen F. Study on Mg-Al hydrotalcites in flame retardant paper preparation[J]. Bio Resources, 2012,7(1):997.
5 Wang D, Leuteritz A, Kutlu B, et al. Preparation and investigation of the combustion behavior of polypropylene/organomodified MgAl-LDH micro-nanocomposite[J]. J Alloys Compd, 2011,509(8):3497.
6 Gain O, Espuche E, Pollet E, et al. Gas barrier properties of poly(ε-caprolactone)/clay nanocomposites: Influence of the morphology and polymer/clay interactions[J]. J Polym Sci Part B: Polym Phys, 2005,43(2):205.
7 Liu L, Yu T, Wang P, et al. In situ polymerization and characte-rization of poly(ε-caprolactone)/layered double hydroxide nanocomposites[J]. Adv Mater Res, 2012,557-559:371.
8 Pucciariello R, Tammaro L, Villani V, et al. New nanohybrids of poly(ε-caprolactone) and a modified Mg/Al hydrotalcite: Mechanical and thermal properties[J]. J Polym Sci Part B: Polym Phys, 2007,45(8):945.
9 Ludueña L N, Alvarez V A, Vazquez A. Processing and microstructure of PCL/clay nanocomposites[J]. Mater Sci Eng A, 2007,460-461:121.
10Su H, Xue J, Cai P, et al. Structure and oxygen-barrier properties of (linear low-density polyethylene/ethylene-vinyl alcohol copolymer)/linear low-density polyethylene composite films prepared by microlayer coextrusion[J]. J Appl Polym Sci, 2015,132(27):34.
11Gorrasi G, Tortora M, Vittoria V, et al. Vapor barrier properties of polycaprolactone montmorillonite nanocomposites: Effect of clay dispersion[J]. Polymer, 2003,44(8):2271.
12Xu B, Zheng Q, Song Y, et al. Calculating barrier properties of po-lymer/clay nanocomposites: Effects of clay layers[J]. Polymer, 2006,47(8):2904.
13Bharadwaj R K. Modeling the barrier properties of polymer-layered silicate nanocomposites[J]. Macromolecules, 2001,34(26):9189.
14Liu Y J, Mao L, Fan S H. Preparation and study of intumescent flame retardant poly(butylene succinate) using MgAlZnFe-CO3 la-yered double hydroxide as a synergistic agent[J]. J Appl Polym Sci, 2014,131(17):8964.
15Liu Yuejun, Mao Long. Effect of MgAlZnFe-CO3 LDHs on fire retardancy and mechanical properties of intumescent flame retardant poly(butylene succinate) composites[J]. Chem J Chin Universities, 2013,34(12):2903(in Chinese).
刘跃军, 毛龙. MgAlZnFe-CO3 LDHs对PBS膨胀阻燃体系性能的影响[J]. 高等学校化学学报, 2013,34(12):2903.
16Messersmith P B, Giannells E P. Synthesis and barrier properties of poly(ε-caprolactone)-layered silicate nanocomposites[J]. J Polym Sci Part A: Polym Chem, 1995,7(33):1047.
17Yan M, Yang H, Xing X. Synthesis and enzymatic degradation of poly(ε-caprolactone-co-ethylene carbonate-co-ethylene oxide) copolymer[J]. Polym Bull, 2013,70(2):467.
18Bach L G, Islam M R, Cao X T, et al. A novel photoluminescent nanohybrid of poly(ε-caprolactone) grafted Mg/Al layered double hydroxides and Tb3+ ions: Synthesis and characterization[J]. J Alloys Compd, 2014,582:22.
19Katiyar V, Gerds N, Koch C B, et al. Poly l-lactide-layered double hydroxide nanocomposites via in situ polymerization of L-lactide[J]. Polym Degrad Stab, 2010,95(12):2563.
20Layek R K, Das A K, Park M J, et al. Enhancement of physical, mechanical, and gas barrier properties in noncovalently functiona-lized graphene oxide/poly(vinylidene fluoride) composites[J]. Carbon, 2015,81(1):329.
21Nielsen L E. Models for the permeability of filled polymer systems[J]. J Macromol Sci: Part A: Chem, 1967,1(5):929.
22Klute C H. Diffusion of small molecules in semicrystalline polymers: Water in polyethylene[J]. J Appl Polym Sci, 1959,1(3):340.
23Lape N K, Nuxoll E E, Cussler E L. Polydisperse flakes in barrier films[J]. J Membr Sci, 2004,236(1-2):29.
[1] 郭妍婷, 黄雪, 尹垚骐, 陈曼, 冯光炷. 蒙脱土增强二聚酸改性不饱和聚酯树脂的制备及性能[J]. 材料导报, 2018, 32(18): 3249-3254.
[2] 龚居霞, 刘新华, 但卫华, 李晓琴, 但年华. 改性纳米二氧化硅/水性聚氨酯杂化皮革补伤剂的制备及表征*[J]. 《材料导报》期刊社, 2017, 31(14): 46-51.
[3] 杨丹丹, 聂康明, 张延好, 王嵩. 两亲性环状聚(己内酯-b-乙烯基吡咯烷酮)的合成与表征*[J]. 《材料导报》期刊社, 2017, 31(12): 26-29.
[4] 张硕,于立岩. 不同水醇比条件下原位聚合的聚吡咯/石墨烯复合材料的电容性能*[J]. 材料导报编辑部, 2017, 31(10): 32-36.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed