Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (15): 139-144    https://doi.org/10.11896/j.issn.1005-023X.2017.015.021
  铁电及铁磁材料 |
力电多场鼓包法测定PZT铁电薄膜的横向压电系数*
何元东1, 孙长振1, 毛卫国1, 毛贻齐2, 张宏龙3, 陈彦飞3, 裴永茂3, 方岱宁4
1 湘潭大学材料科学与工程学院, 湘潭411105;
2 湖南大学机械与运载工程学院, 长沙 410082;
3 北京大学工学院,北京 100871;
4 北京理工大学先进结构技术研究院,北京 100081;
Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method
HE Yuandong1, SUN Changzhen1, MAO Weiguo1, MAO Yiqi2, ZHANG Honglong3, CHEN Yanfei3, PEI Yongmao3, FANG Daining4
1 School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105;
2 College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082;
3 College of Engineering, Peking University, Beijing 100871;
4 Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081;
下载:  全 文 ( PDF ) ( 1692KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为表征Pb(Zr0.52Ti0.48)O3(PZT)薄膜的横向压电性能,以纯力场鼓包测试模型和铁电薄膜材料压电方程为基础,推导了PZT铁电薄膜的力电耦合鼓包本构模型。采用溶胶-凝胶法制备了PZT铁电薄膜,并通过化学腐蚀法获得PZT薄膜鼓包样品。在外加电压为0~14 V的条件下进行鼓包测试。结果表明,在纯力场作用下,PZT薄膜的弹性模量和残余应力分别为91.9 GPa和36.2 MPa;随着电压从2 V变化到14 V,PZT薄膜的横向压电系数d31从-28.9 pm/V变化到-45.8 pm/V。本工作所发展的力电耦合鼓包测试技术及力电耦合鼓包本构模型为评价铁电薄膜材料的横向压电性能提供了一种有效的分析方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何元东
孙长振
毛卫国
毛贻齐
张宏龙
陈彦飞
裴永茂
方岱宁
关键词:  横向压电系数  鼓包测试  力电耦合本构  锆钛酸铅薄膜    
Abstract: On the measuring of transverse piezoelectric coefficients of Pb(Zr0.52Ti0.48)O3 (PZT) thin films, we derived the mechano-electrical coupling bulge constitutive equations of PZT thin films on the basis of bulge test model and ferroelectric constitutive equations. The bulge samples were prepared by sol-gel and chemical etching methods. Mechano-electrical coupling bulge tests were performed by using modified force-electric experimental platform under the applied voltage between 0—14 V. The results showed that the elastic modulus and residual stress of PZT thin films were 91.9 GPa and 36.2 MPa under pure force field, respectively. The transverse piezoelectric coefficients d31 of PZT thin films increased from -28.9 pm/V to -45.8 pm/V when the voltage increased from 2 V to 14 V. Our work provides an effective analysis method for the transverse piezoelectric properties of other ferroelectric thin film materials by using the modified mechano-electrical coupling bulge test and the corresponding constitutive equations.
Key words:  transverse piezoelectric coefficient    bulge test    mechano-electrical coupling constitutive equation    Pb(Zr0.52Ti0.48)-O3 thin films
               出版日期:  2017-08-10      发布日期:  2018-05-04
ZTFLH:  O341  
基金资助: *国家自然科学基金(11272276;11572277;11302004);湖南省自然科学基金杰出青年基金(14JJ1020);国家重大科学仪器设备开发专项(2012YQ03007502)
作者简介:  何元东:1990年生,硕士,研究方向为功能薄膜材料与器件 E-mail:hyd6029@126.com 毛卫国:通讯作者,男,1979年生,博士,教授,博士研究生导师,研究方向为智能材料力学性能表征及仪器设备研制 E-mail:ssamao@126.com
引用本文:    
何元东, 孙长振, 毛卫国, 毛贻齐, 张宏龙, 陈彦飞, 裴永茂, 方岱宁. 力电多场鼓包法测定PZT铁电薄膜的横向压电系数*[J]. 《材料导报》期刊社, 2017, 31(15): 139-144.
HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method. Materials Reports, 2017, 31(15): 139-144.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.015.021  或          http://www.mater-rep.com/CN/Y2017/V31/I15/139
1 Sivanandan K, Achuthan A T, Kumar V, et al. Fabrication and transverse piezoelectric characteristics of PZT thick-film actuators on alumina substrates[J]. Sens Actuat A: Phys,2008,148(1):134.
2 Lefki K, Dormans G J M. Measurement of piezoelectric coefficients of ferroelectric thin films[J]. J Appl Phys,1994,76(3):1764.
3 Kim D, Kim H. Piezoelectric properties of lead zirconate titanate thin films characterized by the pneumatic loading method[J]. Integrated Ferroelectrics,1999,24(1-4):107.
4 Park G T, Choi J J, Ryu J, et al. Measurement of piezoelectric coefficients of lead zirconate titanate thin films by strain-monitoring pneumatic loading method[J]. Appl Phys Lett,2002,80(24):4606.
5 Shepard J F, Moses P J, Trolier-Mckinstry S. The wafer flexure technique for the determination of the transverse piezoelectric coefficient (d31) of PZT thin films[J]. Sens Actuat A: Phys,1998,71(1):133.
6 Shepard J F, Chu F, Kanno I, et al. Characterization and aging response of the d31 piezoelectric coefficient of lead zirconate titanate thin films[J]. J Appl Phys,1999,85(9):6711.
7 Maria J P, Shepard J F, Trolier-McKinstry S, et al. Characterization of the piezoelectric properties of Pb0.98Ba0.02(Mg1/3Nb2/3)O3-PbTiO3 epitaxial thin films[J]. Int J Appl Ceram Technol,2005,2(1):51.
8 Kholkin A L, Wütchrich C, Taylor D V, et al. Interferometric measurements of electric field-induced displacements in piezoelectric thin films[J]. Rev Sci Instruments,1996,67(5):1935.
9 Luginbuhl P, Racine G A, Lerch P, et al. Piezoelectric cantilever beams actuated by PZT sol-gel thin film[J]. Sens Actuat A: Phys,1996,54(1):530.
10 Zhang Q M, Pan W Y, Cross L E. Laser interferometer for the study of piezoelectric and electrostrictive strains[J]. J Appl Phys,1988,63(8):2492.
11 Dubois M A, Muralt P. Measurement of the effective transverse piezoelectric coefficient e31,f of AlN and Pb(ZrxTi1-x)O3 thin films[J]. Sens Actuat A: Phys,1999,77(2):106.
12 Nishio S, Kurokawa F, Tsujiura Y, et al. Precise piezoelectric cha-racterization of Pb(Hf,Ti)O3 thin films deposited by combinatorial sputtering[J]. Thin Solid Films,2016,616:444.
13 Ambika D, Kumar V, Tomioka K, et al. Deposition of PZT thin films with {001}, {110}, and {111} crystallographic orientations and their transverse piezoelectric characteristics[J]. Adv Mater Lett, 2012,3(2):102.
14 Kanno I, Kotera H, Wasa K. Measurement of transverse piezoelectric properties of PZT thin films[J]. Sens Actuat A: Phys,2003,107(1):68.
15 Chun D M, Sato M, Kanno I. Precise measurement of the transverse piezoelectric coefficient for thin films on anisotropic substrate[J]. J Appl Phys,2013,113(4):044111.
16 Dekkers M, Boschker H, Van Z M, et al. The significance of the piezoelectric coefficient d31,eff determined from cantilever structures[J]. J Micromech Microeng,2012,23(2):025008.
17 Dufay T, Guiffard B, Thomas J C, et al. Transverse piezoelectric coefficient measurement of flexible lead zirconate titanate thin films[J]. J Appl Phys,2015,117(20):204101.
18 Xiang Y, Tsui T Y, Vlassak J J, et al. Measuring the elastic modulus and ultimate strength of low-k dielectric materials by means of the bulge test[C]//Proceedings of the IEEE 2004 International Interconnect Technology Conference. Burlingame,2004:133.
19 Lee H K, Ko S H, Han J S, et al. Mechanical properties measurement of silicon nitride thin films using the bulge test[C]//Proc. SPIE 6798 Microelectronics: Design, Technology, and Packaging Ⅲ. Canberra,2007:67981C.
20 方岱宁, 毛卫国, 冯雪, 等. 电磁智能材料力电磁耦合行为的鼓泡实验装置及测试方法: 中国, ZL102645372A[P].2012-08-22.
21 Timoshenko S, Woinowsky-Krieger S. Theory of plates and shells[M]. New York: McGraw-Hill, 1959:282.
22 Moulson A J, Herbert J M. Electroceramics: Materials, properties, applications[M]. Wiley,2003:256.
23 Lin P. The in-situ measurement of mechanical properties of multi-layer coatings[D]. Cambridge: Massachusetts Institute of Technology,1990.
24 Vlassak J J, Nix W D. A new bulge test technique for the determination of Young′s modulus and Poisson′s ratio of thin films[J]. J Mater Res,1992,7(12):3242.
25 Allen M G. Measurement of mechanical properties and adhesion of thin polyimide films[D]. Cambridge: Massachusetts Institute of Technology,1986.
26 Tabata O, Kawahata K, Sugiyama S, et al. Mechanical property measurements of thin films using load-deflection of composite rectangular membranes[J]. Sens Actuat,1989,20(1-2):135.
27 王春雷, 李吉超, 赵明磊. 压电铁电物理[M]. 北京:科学出版社,2009:180.
28 毛卫国, 丁佳, 戴翠英, 等. 一种层状电磁薄膜功能材料鼓包试样的制备方法: 中国, ZL103682086A[P].2014-03-26.
29 毛卫国, 肖敏, 戴翠英, 等. 一种层状电磁薄膜材料鼓包样品的制备方法: 中国, ZL103762307A[P].2014-04-30.
30 Zhang Y J, Zheng X J, Jiao F, et al. The effect of strain and dead layer on the nonlinear electric-mechanical behavior of ferroelectric thin films[J]. Comput Mater Sci,2013,77:377.
31 Lian L, Sottos N R. Stress effects in sol-gel derived ferroelectric thin films[J]. J Appl Phys,2004, 95(2):629.
32 Zhang L, Tsaur J, Maeda R. Residual stress study of SiO2/Pt/Pb-(Zr,Ti)O3/Pt multilayer structure for micro electro mechanical system applications[J]. Jpn J Appl Phys,2003,42(3):1386.
33 Li Y, Feng S, Wu W, et al. Temperature dependent mechanical property of PZT film: An investigation by nanoindentation[J]. PloS One,2015,10(3):0116478.
34 Bahr D F, Robach J S, Wright J S, et al. Mechanical deformation of PZT thin films for MEMS applications[J]. Mater Sci Eng A,1999,259(1):126.
35 Liu D, Zhou B, et al. Determination of the true Young′s modulus of Pb (Zr0.52Ti0.48)O3 films by nanoindentation: Effects of film orientation and substrate[J]. J Am Ceram Soc,2011,94 (11):3698.
36 Zheng X, Li J, Zhou Y. X-ray diffraction measurement of residual stress in PZT thin films prepared by pulsed laser deposition[J]. Acta Mater,2004,52(11):3313.
37 Zheng X J, Yang Z Y, Zhou Y C. Residual stresses in Pb(Zr0.52-Ti0.48)O3 thin films deposited by metal organic decomposition[J]. Scr Mater,2003,49(1):71.
38 Zhou Y C, Yang Z Y, Zheng X J. Residual stress in PZT thin films prepared by pulsed laser deposition[J]. Surf Coat Technol,2003,162(2):202.
39 Zhu H, Chu D. Measurement of residual stresses in ferroelectric Pb-(Zr0.3Ti0.7)O3 fhin films by X-ray diffraction[J]. Jpn J Appl Phys,2013,52(12R):128004.
40 Ma B, Liu S, Tong S, et al. Residual stress of (Pb0.92La0.08)-(Zr0.52Ti0.48)O3 films grown by a sol-gel process[J]. Smart Mater Struct,2013,22(5):055019.
41 Yao K, Yu S, Tay F E H. Residual stress analysis in ferroelectric Pb(Zr0.52Ti0.48)O3 thin films fabricated by a sol-gel process[J]. Appl Phys Lett,2003,82(25):4540.
[1] 孙长振, 何元东, 毛卫国, 顾阳, 毛贻齐, 张宏龙, 陈彦飞, 裴永茂, 方岱宁. 基于新型鼓包法测试NiFe2O4薄膜的力磁性能*[J]. 《材料导报》期刊社, 2017, 31(15): 145-148.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed