Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (14): 77-81    https://doi.org/10.11896/j.issn.1005-023X.2017.014.016
  材料研究 |
用于空间绿色发动机蓄换热的泡沫镍材料的性能研究
曾文文1,2, 段德莉2, 王梦3, 杨晓光2, 李曙2, 张士宏2
1 中国科学院大学, 北京 100049;
2 中国科学院金属研究所, 沈阳 110016;
3 北京控制工程研究所, 北京 100090;
Study on the Performance of Nickel Foam Serving as Thermal Storage & Exchange Material for Space Green Thruster
ZENG Wenwen1,2, DUAN Deli2, WANG Meng3, YANG Xiaoguang2, LI Shu2, ZHANG Shihong2
1 University of Chinese Academy of Sciences, Beijing 100049;
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016;
3 Beijing Institute of Control Engineering, Beijing 100090;
下载:  全 文 ( PDF ) ( 1801KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对空间绿色单组元发动机热启动工况,搭建了蓄换热实验装置,研究了泡沫镍的厚度、孔密度、体密度等参数对其与流动介质瞬时换热能力的影响。研究表明,泡沫镍的瞬时换热能力随厚度的增加而增强;在孔密度较小时(20~70 PPI),比表面积是影响泡沫镍的瞬时换热能力的关键因素,瞬时换热能力随孔密度和体密度的增加而增强;在孔密度较高时(100 PPI),流阻成为影响泡沫镍的瞬时换热能力的主要因素,泡沫镍的瞬时换热能力大幅增强,但随体密度的增加变化不明显。搭建了强制对流条件下泡沫材料流阻实验装置,测量和比较了泡沫镍与催化剂的流阻,发现泡沫镍的流阻随孔密度和体密度的增加而增大,所有泡沫镍的流阻均小于催化剂的流阻。从实际应用角度看,应综合考虑蓄换热实验、点火实验结果和对泡沫金属的力学性能要求等多项因素来选择泡沫金属的参数。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾文文
段德莉
王梦
杨晓光
李曙
张士宏
关键词:  空间绿色发动机  蓄换热材料  瞬时换热  流阻  孔密度  体密度  泡沫镍    
Abstract: Based on the heating start-up conditions of the space green thruster a self-developed apparatus for thermal storage & exchange was set up. The influence of thickness, pore density and bulk density on the transient heat-exchange capacity (THC) between nickel foams and fluids was studied. The results indicated that THC of nickel foams increased with its thickness. The specific surface area was the key parameter to influence the THC under low pore density (20—70 PPI), as THC increased with the pore and bulk density. The flow resistance became the significant parameter under high pore density (100 PPI), as THC increase rapidly while it changes little with increase of bulk density. Moreover, a flow resistance apparatus was built up to measure and compare the flow resistance of nickel foams and catalyzer under forced convection. The results indicated that flow resistance increased with the pore and bulk densities. The flow resistance of catalyzer was higher than that of all nickel foams used in this work. Thermal storage & exchange test, igniting test and mechanical property should be taken into overall consideration to determine the appropriate pore and bulk density of the foam in the view of practical application.
Key words:  space green thruster    thermal storage & exchange material    transient heat-exchange    flow resistance    pore density    bulk density    nickel foam
               出版日期:  2017-07-25      发布日期:  2018-05-04
ZTFLH:  V45  
作者简介:  曾文文:男,1990年生,博士研究生,主要从事热控材料研究 E-mail:wwzeng11s@imr.ac.cn 段德莉:通讯作者,女,1969年生,博士,研究员,研究方向为特殊工况摩擦学及热控材料与技术研发 E-mail:duandl@imr.ac.cn
引用本文:    
曾文文, 段德莉, 王梦, 杨晓光, 李曙, 张士宏. 用于空间绿色发动机蓄换热的泡沫镍材料的性能研究[J]. 《材料导报》期刊社, 2017, 31(14): 77-81.
ZENG Wenwen, DUAN Deli, WANG Meng, YANG Xiaoguang, LI Shu, ZHANG Shihong. Study on the Performance of Nickel Foam Serving as Thermal Storage & Exchange Material for Space Green Thruster. Materials Reports, 2017, 31(14): 77-81.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.014.016  或          http://www.mater-rep.com/CN/Y2017/V31/I14/77
1 Jankovsky R. HAN-based monopropellant assessment for spacecraft[C]∥32nd Joint Propulsion Conference. Lake Buena Vista,1996:1.
2 Anflo K, Mollerberg R, Neff K, et al. High performance green propellant for satellite applications[C]∥45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Denver,2009:1.
3 Chen Xingqiang, Zhang Zhiyong, Teng Yigang, et al. Two kinds of green liquid monopropellants HAN, ADN for replacing hydrazine[J]. Chem Propellants Polym Mater,2011,9(4):63(in Chinese).
陈兴强,张志勇,滕奕刚,等. 可用于替代肼的2种绿色单组元液体推进剂HAN、ADN[J]. 化学推进剂与高分子材料,2011,9(4):63.
4 Chen Xiaowei, Zhang Tao, Ying Pinliang, et al. A novel catalyst for hydrazine decomposition:Molybdenum carbide supported on γ-Al2O3[J]. Chem Commun,2002,3(3):288.
5 李诗卓,李曙,张荣禄,等. 空间发动机(推力器)热环境的模拟及铠装热控器件性能实验方法的研究[C]∥第五届空间热物理会议论文集.黄山,2000:414.
6 李曙,李诗卓,段德莉,等. 小型姿、轨控推力器热控用微型铠装电加热器的研制[C]∥ 第五届空间热物理会议论文集.黄山,2000:420.
7 Banhart J. Manufacture, characterisation and application of cellular metals and metal foams[J]. Prog Mater Sci,2001,46:559.
8 Lefebvre L P, Banhart J,Dunand D C. Porous metals and metallic foams: Current status and recent developments[J]. Adv Eng Mater,2008,10(9):775.
9 Evans A G, Hutchinson J W, Ashby M F. Multifunctionality of cellular metal systems[J]. Prog Mater Sci,1998,43(3):171.
10 Qu Zhiguo, Xu Zhiguo, Tao Wenquan, et al. Experimental study of natural convective heat transfer in horizontally-positioned cellular metal foams with open cells[J].J Xi’an Jiaotong University,2009,43(1):1(in Chinese).
屈治国,徐治国,陶文铨,等. 通孔金属泡沫中的空气自然对流传热实验研究[J]. 西安交通大学学报,2009,43(1):1.
11 Zhao Changying, Lu Tianjian, Hodson H P. Natural convection in metal foams with open cells[J]. Int J Heat Mass Transfer,2005,48(12):2452.
12 Lu Wei, Zhao Changying, Qu Zhiguo. Single-phase convection in circular pipe with metal foams[J]. J Eng Thermophys,2008,29(11):1895(in Chinese).
陆威,赵长颖,屈治国. 金属泡沫填充水平圆管内单相对流换热研究[J]. 工程热物理学报,2008,29(11):1895.
13 Ding X R, Lu L S, Chen C, et al. Heat transfer enhancement by using four kinds of porous structures in a heat exchanger[J]. Appl Mech Mater,2011,52:1632.
14 Lu T J, Stone H A, Ashby M F. Heat transfer in open-cell metal foams[J]. Acta Mater,1998,46(10):3619.
15 Duan Deli. Study on the special electro-thermal material for space thermo-decomposition of hydrazine thruster[D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2005 (in Chinese).
段德莉. 肼热分解式空间推力器用特种电热材料研究[D]. 沈阳:中国科学院金属研究所,2005.
[1] 达波, 余红发, 麻海燕, 吴彰钰. 全珊瑚海水混凝土中不同种类钢筋的防腐蚀性能[J]. 材料导报, 2019, 33(12): 2002-2008.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed