Please wait a minute...
CLDB  2017, Vol. 31 Issue (9): 146-151    https://doi.org/10.11896/j.issn.1005-023X.2017.09.020
  材料综述 |
水泥回转窑一维数学模型研究进展及趋势*
王俊杰1, 欧丹林2, 刘小蒙2, 梁逸敏2
1 中国建筑材料科学研究总院绿色建筑材料国家重点实验室,北京 100024;
2 浙江邦业科技股份有限公司,杭州 310052
One Dimensional Mathematical Models for Rotary Cement Kilns: A Review
WANG Junjie1, OU Danlin2, LIU Xiaomeng2, LIANG Yimin2
1 State Key Laboratory of Green Building Materials, China Building Materials Academy, Beijing 100024;
2 Zhejiang Banyear Technology Co.,Ltd, Hangzhou 310052
下载:  全 文 ( PDF ) ( 1493KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 全面系统地综述了国内外水泥回转窑一维数学模型,重点介绍了传热模型、料床运动模型、煤粉燃烧模型和熟料矿物形成模型。应用MATLAB编程、求解,展示并分析了不同模型及关键参数对模拟结果的影响。在此基础上,展望了回转窑一维数学模型的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王俊杰
欧丹林
刘小蒙
梁逸敏
关键词:  水泥回转窑  一维模型  传热  料床运动  燃烧    
Abstract: One-dimensional model of the rotary cement kilns are summarized. Models for heat transfer in the kiln, the solid bed and its movement, coal combustion and chemical reactions of the clinker are discussed separately. Effects of different kinds of models and the variation of key parameters on the simulation of rotary kilns are analyzed with MATLAB. Furthermore, trends of the one-dimensional model of rotary kilns are put forward.
Key words:  cement rotary kilns    one-dimensional model    heat transfer    movement of the material bed    combustion
               出版日期:  2017-05-10      发布日期:  2018-05-03
ZTFLH:  TU522.064  
  TB321  
基金资助: *国际科技合作资助项目(2015DAF60200)
作者简介:  王俊杰:男,1989年生,硕士,工程师,主要从事水泥窑炉数值模拟与分析的研究 E-mail:cbmawangjunjie@163.com
引用本文:    
王俊杰, 欧丹林, 刘小蒙, 梁逸敏. 水泥回转窑一维数学模型研究进展及趋势*[J]. CLDB, 2017, 31(9): 146-151.
WANG Junjie, OU Danlin, LIU Xiaomeng, LIANG Yimin. One Dimensional Mathematical Models for Rotary Cement Kilns: A Review. Materials Reports, 2017, 31(9): 146-151.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.09.020  或          http://www.mater-rep.com/CN/Y2017/V31/I9/146
[1] Xu Xun, Wang Lan, Fen Peiran, et al.Investigation on temperature raising characteristics of kiln feed in rotary kiln of NSP system[J]. Bull Chin Ceram Soc,2013,32(10):1949(in Chinese).徐迅, 汪澜, 封培然, 等. 预分解窑入窑物料窑内温升特点探讨[J]. 硅酸盐通报,2013, 32(10):1949
[2] Qu Hang, Zhao Jun, Liu Xiaoyan.Experimental study on the inf-luence factors of transverse motion of particle at rolling regime in the rotary kiln[J]. Bull Chin Ceram Soc,2007, 26(3):441(in Chinese).曲航, 赵军, 刘晓燕. 回转窑内滚动状态下颗粒横向运动的影响因素的实验研究[J]. 硅酸盐通报,2007,26(3):441.
[3] Wang Hui, Luo Shen, Wen Zhi.Research status and trend of the mathematical model of heat transfer, flow and combustion process in rotary kilns[J]. Mining Metall,2006,15(2):28(in Chinese).王汇, 罗申, 温治. 回转窑内流动传热和燃烧过程数学模型的研究现状及其发展趋势[J]. 矿冶,2006,15(2):28.
[4] Feng Peiran, Qi Yanyong.Preliminary inquiry of cement rotary kiln thermal dynamic[J]. Mater Rev,2011,24(S2):284(in Chinese).封培然, 齐研勇. 水泥回转窑热动力学初探[J]. 材料导报,2011,24(专辑18):284.
[5] Chen Chunming, Zhang Jian, Zhou Lixing.A one-dimensional mathe-matical model for pulverized coal multi-phase swirl flow and combustion and its application[J].J Eng Thermal Energy Power,2001,16(5):533(in Chinese).陈春明, 张健, 周力行. 旋流煤粉多相流动与燃烧一维数学模型及应用[J]. 热能动力工程,2001,16(5):533.
[6] Imber M, Paschkis V.A new theory for a rotary-kiln heat exchanger[J]. Int J Heat Mass Transfer,1962,5:623.
[7] Allan Sass.Simulation of the heat-transfer phenomena in a rotary kiln[J]. Ind Eng Chem Process Des Development,1967,7:532.
[8] Gorog J P, Adams T N, Brimacombe J K.Heat transfer from flames in a rotary kiln[J]. Metall Trans,1983,9(148):411.
[9] Martins M A, Oliveira L S, Franca A S.Modeling and simulation of petroleum coke calcinations in rotary kilns[J]. Fuel,2001,80:1611.
[10] Martins M A, Oliveira L S, Franca A S.Modeling and simulation of limestone calcinations in rotary kilns[J]. ZKG Int,2002,55(4):76.
[11] Mujumdar K S, Ranade V V.Simulation of rotary cement kilns using one-dimensional model[J]. Chem Eng Res Des,2006,84(A3):165.
[12] Mujumdar K S, Amit Arora, Vivek V Ranade.Modeling of rotary cement kilns: Applications to reduction in energy consumption[J]. Ind Eng Chem Res,2006,45:2315.
[13] Li Aili, Kao Hongtao, Guo Tao, et al.Study on temperature distribution of gas and material in rotary kiln[J]. Mater Rev: Res,2012,26(12):108(in Chinese).李爱莉, 考宏涛, 郭涛, 等. 回转窑内气体和物料温度分布的研究[J]. 材料导报:研究篇, 2012,26(12):108.
[14] Christopher Csernyei, Anthony G Straatman.Numerical modeling of a rotary cement kiln with improvements to shell cooling[J]. Int J Heat Mass Transfer,2016,102:610.
[15] 徐德龙, 谢峻林. 材料工程基础[M]. 武汉:武汉理工大学出版社,2008:188.
[16] Spang ⅢH A.A dynamic model of a cement kiln[J]. Automatica,1972,8:309.
[17] Goshayeshi H R, Poor F K.Modeling of rotary kiln in cement industry[J]. Energy Power Eng,2016,8:23.
[18] Mastorakos E, Massias A, Tsakiroglou C D, et al.CFD predictions for cement kilns including flame modeling, heat transfer and clinker chemistry[J].Appl Mathemat Modell,1999,23:55.
[19] 胡道和. 水泥工业热工设备[M]. 武汉:武汉理工大学出版社,1992:85.
[20] Saeman W C.Passage of solids through rotary kilns: Factors affec-ting time of passage[J]. Chem Eng Progress,1951,47:508.
[21] Kramers H, Croockewit P.The passage of granular solids through inclined rotary kilns[J]. Chem Eng Sci,1952,6:259.
[22] Stephane Ngako, Ruben Mouangue, Sebastien Caillat, et al.Numerical investigation of bed depth height, axial velocity and mean residence time of inert particles in steady state industrial cement rotary kiln: Case of Figuil plant in Cameroon[J]. Powder Technol,2015, 271:221.
[23] Beer J M, Chigier N A.Combustion aerodynamics[M]. London: Applied Science Publishers,1972.
[24] Liu Fang, Song Zhengchang, Yang Li, et al.Study of the temperature distribution in cement rotary kilns[J]. Energy Metall Ind,2009,5(28):21(in Chinese).刘方, 宋正昶, 杨丽, 等. 水泥回转窑温度分布研究[J]. 冶金能源,2009,5(28):21.
[25] Fan Xiaohui, Yang Guiming, et al.Predictive models and operation guidance system for iron ore pelletinduration in traveling grate-rotary kiln process[J]. Computers Chem Eng,2015,79:80.
[26] Ricou F P, Spalding D B.Measurements of entrainment by axisymmetrical turbulent jets[J]. J Fluid Mechan,1961,11:21.
[27] Young R W, Cross M C, Gibson R D.Mathematical model of grate-kiln-cooler process used for induration of iron ore pellets[J]. Ironmaking Steelmaking,1979,6(1):1.
[28] Granados D A, Chejne F, Mejía J M .Oxy-fuel combustion as an alternative for increasing lime production in rotary kilns[J]. Appl Energy,2015,158:107.
[29] Guo Y C, Chan C K, Lau K S.Numerical studies of pulverized coal combustion in a tubular coal combustor with slanted oxygen jet[J]. Fuel,2003,82(8):893.
[30] Baum M M, Street P J.Predicting the combustion behavior of coal particles[J]. Combustion Sci Technol,1971,3(5):231.
[31] Field M A.Rate of combustion of size-graded fractions of char from a low rank coal between 1 200 K—2 000 K[J]. Combustion Flame,1969,13:237.
[32] Ranade V V, Mujumdar K S.Modeling of rotary cement kiln[C]∥Third International Conference on CFD in the Minerals and Process Industries. CSIRO. Melbourne. Australia,2003.
[33] Feng Yun, Chen Yanxin.Development of research on calcium carbonate for decomposed kinetics[J]. Bull Chin Ceram Soc,2006,25(3):140(in Chinese).冯云,陈延信.碳酸钙的分解动力学研究进展[J].硅酸盐通报,2006,25(3):140.
[34] Vincent Meyer, Alexander Pisch, Karri Penttilä, et al.Computation of steady state thermochemistry in rotary kilns: Application to the cement clinker manufacturing process[J]. Chem Eng Res Des,2016,115:335.
[35] Carl Duchesne, André Desbiens, Gerard Szatvanyi.Rotary kiln production quality forcecasting based on flame imaging[C]∥International Symposium on Advanced Control of Chemical Process. Gramado.Brazil,2006:71.
[36] Szatvanyi G, Duchesne C, Bartolacci G.Multivariate image analysis of flames for product quality and combustion control in rotary kilns[J]. Ind Eng Chem Res,2006,45:4706.
[37] He Min, Zhang Jing, He Zhaohui, et al.Measurements of filling percentage of clinker using rotary kiln image[J]. Chin J Sci Instrument,2009,30(12):2586(in Chinese).何敏, 章兢, 何昭晖, 等. 基于回转窑图像的熟料填充率测量[J]. 仪器仪表学报, 2009,30(12):2586.
[38] Liu Xiaoyan, Zhou Shengjian, Zhang Xiaogang.Measurement of repose angle of solids in rotary kilns based on image processing[J]. Control Eng China,2009,16(4):498(in Chinese).刘小燕, 周生健, 张小刚. 基于图像处理的回转窑物料休止角检测方法[J]. 控制工程,2009,16(4):498.
[39] Wang Junjie, Tian Guiping, Wang Lan.Introduction to the automatic and measure and control techniques of cement production[J]. Cement,2015(10):52(in Chinese).王俊杰, 田桂萍, 汪澜. 国内外水泥生产自动化及测控技术介绍[J]. 水泥,2015(10):52.
[40] Christoph N Zwicky, Leopold Blahous, Sebastian B Mueller.Near-infrared (NIR) on-line analysis for coarse-grained raw materials[J]. ZKG Int,2011,64(4):44.
[41] Georg Bachmann, Jorg Anders, Christian Frenck.The latest laboratory automation generation at Holcim's Lagerdorf plant[J]. ZKG Int,2012,65(1):36.
[42] Bluhm-Drenhaus T, Wirtz S, Scherer V, et al.Reactions of alkalis, chlorine and sulfur during clinker production[J]. Cement Int,2011,9(3):39.
[43] Hu Guilin, Torsten Vagn Jensen.Dynamic simulation of alkali, sulphur and chloride circulation in a cement kiln[J]. ZKG Int,2010,63(11):33.
[44] Stadler K S, Jan Poland, Eduardo Gallestey.Model predictive control of a rotary cement kiln[J]. Control Eng Practice,2011,19:1.
[45] Küssel U, Reiter M, Abel D, et al.Observer-based model predictive control of rotary kilns-application to limestone calcinations[J]. IFAC Proceedings Volumes,2010,43(1):309.
[1] 张建平, 胡慧瑶, 王树森, 龚曙光, 刘庭显. 正交各向异性结构的三维无网格法稳态传热模型及应用[J]. 材料导报, 2020, 34(8): 8036-8041.
[2] 方继恒, 刘曦, 谢明, 胡洁琼, 王松, 张吉明, 杨有才, 陈永泰, 王塞北, 李再久. 过热度、传热系数以及高斯分布参数对Ag-28Cu-2Ni合金凝固组织的影响[J]. 材料导报, 2019, 33(18): 3077-3084.
[3] 刘泓吟, 杨宏宇, 陈明凤. 异氰酸酯指数对聚氨酯硬泡阻燃、热稳定性及燃烧性能的影响[J]. 材料导报, 2019, 33(12): 2071-2075.
[4] 丁述宇, 马国政, 徐滨士, 王海斗, 陈书赢, 何鹏飞, 王译文. 等离子喷涂层微观成形过程数值模拟研究现状[J]. 材料导报, 2019, 33(11): 1889-1896.
[5] 雷鸿, 张新铭, 王济平. 多孔泡沫材料强化传热特性及场协同分析[J]. 材料导报, 2018, 32(6): 1010-1014.
[6] 肖国庆, 周盼, 丁冬海. 熔盐对ZrO2纤维模板辅助燃烧合成ZrB2纤维的影响[J]. 材料导报, 2018, 32(22): 3875-3879.
[7] 詹伟涛,贺建雄,王艺臻,姜宏. 羟基含量对全氧燃烧浮法玻璃结构弛豫的影响[J]. 《材料导报》期刊社, 2018, 32(12): 2062-2065.
[8] 魏玉鹏, 王海燕, 兰伟, 卢学峰, 喇培清, 马吉强. 溶液燃烧法合成Co3O4纳米粉体及热处理研究[J]. 《材料导报》期刊社, 2017, 31(6): 29-33.
[9] 何姗姗, 李薇, 王灵志, 卢晗, 张宏亮. 木质与草本生物质燃烧特性及工况优化研究[J]. 《材料导报》期刊社, 2017, 31(6): 50-55.
[10] 刘红盼, 黄小凤, 马丽萍, 尚志标, 刘秀状, 赵丹, 蒋明. 基于有限元法模拟微晶玻璃的微晶化加热过程*[J]. 《材料导报》期刊社, 2017, 31(20): 164-169.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed