Please wait a minute...
材料导报  2019, Vol. 33 Issue (9): 1431-1442    https://doi.org/10.11896/cldb.18030132
  材料与可持续发展(二)——材料绿色制作与加工* |
CO2气体保护焊短路过渡控制技术的研究现状与展望
陈涛1, 薛松柏1, 孙子建2, 翟培卓1, 陈卫中2, 郭佩佩2
1 南京航空航天大学材料科学与技术学院,南京 210016;
2 华恒焊接股份有限公司,苏州 215300
Short-circuit Transition Control Technology for CO2 Gas Shielded Welding: Research Status and Prospect
CHEN Tao1,2, ZHAI Peizhuo1,2, GUO Peipei2
1 College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016;
2 Kunshan Huaheng Welding Equipment Corporation, Suzhou 215300
下载:  全 文 ( PDF ) ( 3186KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 CO2气体保护焊因成本低、生产率高等特点,广泛应用于制造业。随着制造业节能减排的需求日益增加及汽车轻量化概念的推广,制造业对薄板焊接的要求不断提高,传统的焊接方式已不能满足其要求。CO2短路过渡焊相对于传统的焊接方式(钨极氩弧焊、熔化极氩弧焊、激光焊等),具有高热稳定性、低热输入、低熔深等特点,但其焊接飞溅大、焊缝成形差,从而限制了其广泛应用。
CO2短路过渡焊接过程是由燃弧阶段与短路阶段组成的复杂的非线性时变系统,熔滴过渡过程决定了焊接过程的稳定性与焊缝成形的优劣。燃弧阶段熔滴在电磁收缩力、表面张力、等离子流力、金属蒸发反作用力等多种力的共同作用下长大并与熔池接触短路,同时形成稳定液桥。短路阶段,液桥在表面张力、电磁收缩力和粘滞力的作用下形成缩颈并断开。燃弧阶段的熔滴尺寸、振荡特性,短路阶段熔池的振荡特性、峰值电流都对熔滴过渡稳定性有十分重要的影响。针对短路过渡焊飞溅产生机制的研究表明,熔滴、熔池的氧化还原反应、短路前期产生的瞬时短路和短路末期液桥电爆炸是导致焊接过程不稳定及产生飞溅的主要因素。
国内外众多焊接研究者针对CO2短路过渡焊熔滴过渡过程及控制技术进行了大量的研究与探索,研究工作主要分为四个方向:焊接材料成分的优化,基于焊接电源输出电信号的熔滴过渡建模及控制,基于视觉传感技术的熔滴过渡控制和基于磁控技术的CO2短路过渡焊接技术。活性焊丝和药性焊丝的推广可有效降低焊接飞溅;波控技术及衍生的CMT技术在使用小电流参数焊接时取得了优异的焊接效果;中、小电流参数条件下,磁控焊接技术可有效解决焊接飞溅和成形差问题。
本文从焊丝、电源、外加磁场形式和工艺四个方面综述了国内外CO2气体保护焊短路过渡控制技术的研究现状,首先分析了CO2短路过渡焊焊接飞溅的产生机理,其次介绍了典型的CO2气体保护焊短路过渡控制技术的原理、特点和局限性,分析了不同短路过渡控制技术的特点,最后阐述了目前短路过渡控制技术在研究和应用过程中存在的问题及解决办法,并对该领域下一步发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈涛
薛松柏
孙子建
翟培卓
陈卫中
郭佩佩
关键词:  CO2气体保护焊  短路过渡  焊接飞溅  焊缝成形    
Abstract: The features of low cost and high productivity enable the widespread application of CO2 gas shielded welding in manufacturing industry. With the increasing demand for energy saving and emission reduction in the manufacturing industry and the promotion of the concept of lightweight automobile, the requirements of thin plate welding in manufacturing are continuously raising, which cause the traditional welding method can hardly meet the new requirements. Compared with the conventional welding approaches (traditional tungsten argon arc welding, argon-arc welding, laser welding, etc.), CO2 short-circuit transition welding is superior due to its high thermal stability, low heat input, low penetration depth, etc. Yet, the large welding spatter and poor weld formation have blocked its promotion and wide application.
The CO2 short-circuit transition welding process is a complex nonlinear time-varying system composed of the arcing phase and the short-circuit phase. The droplet transfer process plays a dominant role in affecting the stability of the welding process and the quality of weld molding. In the arcing stage, the droplets grow under the combined action of electromagnetic contraction force, surface tension, plasma flow force, metal evaporation reaction force, and are short-circuited with the molten pool to form a stable liquid bridge. In the short-circuit phase, as a result of the action of surface tension, electromagnetic contraction force and viscous force, the liquid bridge necks down and finally breaks. The size of droplets and oscillating characteristics in arcing phase, the oscillating characteristics of the molten pool and peak current in the short-circuit phase all profoundly impact the stability of the droplet transition. The research on the spatter generation mechanism of short-circuit transition welding shows that the primary factors causing the instability and splashing in the welding process lie in the redox reaction of the molten droplet pool, the instantaneous short circuit generated in the early stage of short circuit and the liquid bridge electrical explosion at the end of short circuit.
Great efforts have been put into the research and exploration on the CO2 short-circuit transition welding droplet transfer process and its control technology. Specifically speaking, the research work can be divided into four aspects, including optimizing the composition of welding materials, modeling and controlling droplets transfer based on output electrical signals of welding power, controlling droplet transfer based on vision sensing technology and CO2 short-circuit transition welding technology based on magnetron technology. The promotion of active welding wire and medicinal welding wire can effectively reduce welding spatter. Wave control technology and CMT technology achieve excellent welding effect under small welding current parameters. Magnetron welding technology exhibits notable advantage in solving welding spatter and forming problems under medium and small current parameters.
This paper summarizes the research status of the short-circuit transition control technology for CO2 gas shielded welding both at home and abroad from four aspects: welding wire, power supply, external magnetic field form and technology. Firstly, the spatter generation mechanism of short-circuit transition in CO2 welding is analyzed. Then, several typical principles, characteristics as well as limitations of short-circuit transition control technology for CO2 gas shielded welding are introduced in detail. Besides, the characteristics of diverse short-circuit transition control techniques are analyzed. Finally, the existing problems and corresponding solutions in the current process of research and application of the short-circuit transition control technology are elaborated, and the developing trend in this field are also put forward.
Key words:  CO2 gas shielded welding    short-circuit transition    welding spatter    weld molding
                    发布日期:  2019-05-08
ZTFLH:  TG434.5  
基金资助: 国家自然科学基金(51675269);江苏高校优势学科建设工程资助项目
通讯作者:  xuesb@nuaa.edu.cn   
作者简介:  陈涛,2016年6月毕业于中国石油大学(华东),获得工学学士学位。现为南京航空航天大学材料科学与技术学院博士研究生,在薛松柏教授的指导下进行研究。目前主要研究领域为先进连接技术。薛松柏,南京航空航天大学材料科学与技术学院二级教授、研究员、博士研究生导师,享受政府特殊津贴专家。长期以来专注于焊接材料及焊接工艺的研究,制定了五项国家标准、五项机械工业部行业标准并发布实施;主持完成了三十多项国家、部、市课题的研究,共取得主要科研成果三十余项。获得2016年国家科技进步奖二等奖、2014年教育部技术发明二等奖、国防科技进步奖三等奖、江苏省科技进步三等奖等。在国内外学术刊物上发表论文320余篇,SCI收录120余篇,EI收录160余篇,论文他引300余次,单篇他引38次。
引用本文:    
陈涛, 薛松柏, 孙子建, 翟培卓, 陈卫中, 郭佩佩. CO2气体保护焊短路过渡控制技术的研究现状与展望[J]. 材料导报, 2019, 33(9): 1431-1442.
CHEN Tao, XUE Songbai, SUN Zijian, ZHAI Peizhuo, CHEN Weizhong, GUO Peipei. Short-circuit Transition Control Technology for CO2 Gas Shielded Welding: Research Status and Prospect. Materials Reports, 2019, 33(9): 1431-1442.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18030132  或          http://www.mater-rep.com/CN/Y2019/V33/I9/1431
1 Selvi S, Vishvaksenan A, Rajasekar E. Defence Technology,2018,14,28.
2 Chen S J, Liu C H, Yu Y, et al. Advanced Materials Research,2011,339,440.
3 Slania J. Welding International,1996,10(11),849.
4 Baixo C E I. Study of the MIG/MAG welding by the hyperbaric dry technique. Ph. D. Thesis, Federal University of Santa Catarina, USA,1999.
5 Wang Y, Lü X Q, Jing H Y. International Journal of Advanced Manufacturing Technology,2016,87(1-4),1.
6 Esilva R H G, Carlosdutra J, Raul GohrJr. Welding International,2009,23(4),251.
7 Choi J H, Lee J Y, Yoo C D. Welding Journal,2001,80(10),239s.
8 Choi S K. Welding Journal,1998,77(1),38.
9 Ipoloskov S, YuSIshchenko, Alebedev V, et al. Welding International,2001,15(11),873.
10 Hirata Y, Oji T, Osamura T. Welding International,2005,19(11),262.
11 Li C G, Wang X B, Sun H L. Welding Technology,2007,36(2),1(in Chinese).
李春国,王惜宝,孙洪玲.焊接技术,2007,36(2),1.
12 Shi L B. Study on the surface coating of welding wire of CO2-gas shielding arc-welding. Master’s Thesis, National University of Tianjin, China,2007(in Chinese).
石立波.CO2气体保护焊焊丝表面涂层技术探索.硕士学位论文,天津大学,2007.
13 Tokihiko Kataoka, Rinsei Ikeda, Moriaki Ono, et al. Welding International,2009,23(7),517.
14 Li C G.Research on the activated CO2-gas shielding arc welding. Master’s Thesis, Tianjin University, China,2007(in Chinese).
李春国.活性CO2气体保护焊的研究.硕士学位论文,天津大学,2007.
15 Shi Z Q. The study om active wire for CO2 gas shield welding. Master’s Thesis, National University of Tianjin, China,2005(in Chinese).
石中泉.活性CO2焊丝的研究.硕士学位论文,天津大学,2005.
16 Wang B, Yang L, Wang Y. Journal of Welding,2006,27(7),77(in Chinese).
王宝,杨林,王勇.焊接学报,2006,27(7),77.
17 Liu L. Study on droplet transition and weld forming of arc welding in thin arc welding with flux cored wire. Master’s Thesis, Jiangsu University of Science and Technology, China,2017(in Chinese).
刘露.药芯焊丝摇动电弧窄间隙焊接熔滴过渡及焊缝成形研究.硕士学位论文,江苏科技大学,2017.
18 Wang H. Experimental study on droplet transfer and splashing of metal powder cored flux cored wire. Master’s Thesis, Taiyuan University of Technology, China,2012(in Chinese).
王皇.金属粉芯型药芯焊丝熔滴过渡及飞溅的试验研究.硕士学位论文,太原理工大学,2012.
19 Wang Y, Wang B. Journal of Mechanical Engineering,2008,44(4),234(in Chinese).
王勇,王宝.机械工程学报,2008,44(4),234.
20 Wang B, Song Y L. Welding arc phenomenon and welding material processability, Machinery Industry Press, China,2012(in Chinese).
王宝,宋永伦.焊接电弧现象与焊接材料工艺性,机械工业出版社,2012.
21 Huang Y. Journal of Beijing University of Technology,1998,24(3),76(in Chinese).
黄勇.北京工业大学学报,1998,24(3),76.
22 Han Z D, Du D, Zhang Q, et al. Journal of Tsinghua University (Science and Technology),1999,39(4),35(in Chinese).
韩赞东,都东,张前,等.清华大学学报(自然科学版),1999,39(4),35.
23 Yin S Y. The basic technology of gas shielded welding, Machinery Industry Press, China,2007(in Chinese).
殷树言.气体保护焊工艺基础,机械工业出版社,2007.
24 Yu J R, Jiang L P, Chen L, et al. Journal of Beijing Institute of Petrochemical Technology,2001,9(2),1(in Chinese).
俞建荣,蒋力培,陈璐,等.北京石油化工学院学报,2001,9(2),1.
25 Zhang C B, Sun G, Wu Y X. Journal of Shanghai Jiaotong University,2005,39(11),1758(in Chinese).
张春波,孙广,吴毅雄.上海交通大学学报,2005,39(11),1758.
26 Fernsler R F, Hubbard R F, Lampe M. Journal of Applied Physics,1994,75(7),3278.
27 Ryka A J, Pfeifer T. Welding International,2014,28(12),931.
28 Stava E K. Welding Journal,1993,72(1),25.
29 Peters S R. U.S.patent, US8937267,2015.
30 Min H C, Yong C L. Welding Journal,2006,85(12),271s.
31 Yang C D, Huang H Y, Zhang H J, et al. Advanced Materials Research,2012,590,28.
32 Garleanu D, Garleanu G, Borda C, et al. International Journal of Scientific & Engineering Research,2017,7(10),373.
33 Jiang Y L. Research on hybrid control of waveform presetting and liquid bridge status feedback in short circuit transfer welding. Master’s Thesis, Shandong University, China,2012(in Chinese)
蒋元宁.短路过渡焊波形预置+小桥状态反馈复合控制法研究.硕士学位论文,山东大学,2012.
34 Chen M A, Jiang Y L, Wu C S. Transactions of the China Welding Institution,2014,35(7),79(in Chinese).
陈茂爱,蒋元宁,武传松.焊接学报,2014,35(7),79.
35 孙子建,刘毅.中国专利,CN103111732A,2013.
36 Zhang H T, Feng J C, He P, et al. Materials Science & Engineering A,2009,499(1-2),111.
37 Agudo L, Weber S, Pinto H, et al. Materials Science Forum,2008,46(3),347.
38 Feng J, Zhang H, He P. Materials & Design,2009,30(5),1850.
39 Ren F S, Yang S, Liu J, et al. Transactions of the China Welding Institution,2014,35(2),75(in Chinese).
任福深,杨帅,刘嘉,等.焊接学报,2014,35(2),75.
40 Gu J M. The study of full digital system for AC short-circuit welding and low heat input research. Master’s Thesis, Beijing Industry University, China,2009(in Chinese).
古金茂.全数字交流短路过渡焊接系统及低热输入研究.硕士学位论文,北京工业大学,2009.
41 Gao Q. Study on new push & pull CO2 welding technics. Master’s Thesis, Beijing Industry University, China,2010(in Chinese).
高强.新型推拉送丝CO2焊接工艺研究.硕士学位论文,北京工业大学,2010.
42 Zhang D. Research on the effect of waveform parameters on welding stabi-lity and welding formation in high speed CMT welding. Master’s Thesis, Shandong University, China,2016(in Chinese).
张栋.波形参数对高速CMT焊接稳定性及焊缝成形影响的研究.硕士学位论文,山东大学,2016.
43 Zhang H P. Study on new low energy input welding system and process control. Master’s Thesis, Beijing Industry University, China,2007(in Chinese).
张撼鹏.新型低能量输入电弧焊接系统及其过程控制研究.硕士学位论文,北京工业大学,2007.
44 Zhang H T, Feng J C, Hu L L. Materials Science and Technology,2012,20(2),128(in Chinese).
张洪涛,冯吉才,胡乐亮.材料科学与工艺,2012,20(2),128.
45 Luo Q, Lu D M, Luo J. Advanced Materials Research,2010,102-104,451.
46 Zhang X L. Effect of transverse rotating magnetic field on welding arc. Master’s Thesis, Beijing Industry University, China,2009(in Chinese).
张晓亮.横向旋转磁场对焊接电弧的影响.硕士学位论文,北京工业大学,2009.
47 Bai Y J, Chen S J, Liu C H, et al. Journal of Beijing University of Technology,2013,39(7),971(in Chinese).
白韶军,陈树君,刘长辉,等.北京工业大学学报,2013,39(7),971.
48 Jiang P, Gao D, Wang C W, et al. Hot Working Technology,2011,40(5),137(in Chinese).
蒋萍,高顶,王村伟,等.热加工工艺,2011,40(5),137.
49 Lee S H, Kim J S, Lee B Y, et al. Key Engineering Materials,2005,297-300,2825.
50 Chang Y L, Li H T, Mei Q, et al. Journal of Shenyang University of Technology,2015,37(6),624(in Chinese).
常云龙,李海涛,梅强,等.沈阳工业大学学报,2015,37(6),624.
51 Li H T. The research of synchronous magnetic pulse control in the medium current CO2 welding short circuit liquid bridge. Master’s Thesis, Shen-yang University of Technology, China,2016(in Chinese).
李海涛.中等电流CO2焊短路液桥同步磁脉冲控制研究.硕士学位论文,沈阳工业大学,2016.
52 Niu Y.The mechanism research of synchronous magnetic field control on short-circuiting CO2 welding. Master’s Thesis, Shenyang University of Technology, China,2015(in Chinese).
牛野.同步磁场控制短路过渡CO2焊机理研究.硕士学位论文,沈阳工业大学,2015.
53 Ma D H. Study on microstructure and properties of high strength steel welds under magnetic field. Master’s Thesis, Shenyang University of Technology, China,2015(in Chinese).
马大海.磁场作用下高强钢焊缝组织性能研究.硕士学位论文,沈阳工业大学,2015.
54 Sun Y H. Analysis of input and output signal in short circuit transition of arc welding. Master’s Thesis, Tianjin University, China,2016(in Chinese).
孙蕴慧.弧焊短路过渡输入输出短信号分析.硕士学位论文,天津大学,2016.
55 Lu Xiaoqing, Lin Jianping, Cao Biao, et al. Journal of Welding,2008,29(7),17(in Chinese).
吕小青,林建平,曹彪,等.焊接学报,2008,29(7),17.
56 Li Zhiyong, Zhang Qiang, Li Yan, et al. Advanced Manufacturing Processes,2013,28(2),213.
57 Simpson S W. Science & Technology of Welding & Joining,2007,12(6),481.
58 Liu Jinglei, Chen Yanbin, Xu Qinghong. Journal of Welding,2006,27(1),72(in Chinese).
刘京雷,陈彦宾,徐庆鸿.焊接学报,2006,27(1),72.
59 Cayo E H, Alfaro S C A. Journal of Achievements in Materials & Manufacturing Engineering,2008,29(1),52.
60 Wang K H. Research on feature extraction and intelligent control of molten pool based on vision. Ph.D. Thesis, Nanjing University of Science and Technology, China,2007(in Chinese).
王克鸿.基于视觉的熔池过程特征提取方法及智能控制研究.博士学位论文,南京理工大学,2007.
61 Li M X. Study on the shape of short circuit transition welding pool based on digital image. Master’s Thesis, Shanghai Jiaotong University, China,2011(in Chinese).
李梦醒.基于数字图像的短路过渡焊熔池形态研究.硕士学位论文,上海交通大学,2011.
62 Wang Y, Lyu X Q, Jing H Y. Journal of Welding,2016,37(5),49(in Chinese).
王莹,吕小青,荆洪阳.焊接学报,2016,37(5),49.
63 He S, Chen H, Chen Y, et al. Laser & Optoelectronics Progress,2018(2),18(in Chinese).
何双,陈辉,陈勇,等.激光与光电子学进展,2018(2),18.
64 Wang X Y, Wang W, Lin S Y, et al. Journal of Welding,2010,31(3),17(in Chinese).
王旭友,王威,林尚扬,等.焊接学报,2010,31(3),17.
65 Ning F, Wu S K, Chen K, et al. Applied Laser,2009,29(4),298(in Chinese).
宁丰,吴世凯,陈铠,等.应用激光,2009,29(4),298.
66 Jiang F, Li Y F, Chen S J. Journal of Mechanical Engineering.2018(2),16(in Chinese).
蒋凡,李元锋,陈树君.机械工程学报,2018(2),16.
[1] 陈涛, 薛松柏, 翟培卓, 孙子建, 陈卫中, 郭佩佩. 基于图像处理的短路过渡焊熔池振荡特性分析[J]. 材料导报, 2019, 33(16): 2734-2739.
[2] 罗子艺, 韩善果, 陈永城, 蔡得涛, 哈斯金·弗拉基斯拉夫. 工艺参数对激光-电弧复合焊缝成形及拉伸性能的影响[J]. 材料导报, 2019, 33(13): 2146-2150.
[3] 黄勇,赵文强,张利尧. 粉末熔池耦合活性TIG焊接方法[J]. 材料导报编辑部, 2017, 31(22): 70-74.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed