Please wait a minute...
材料导报  2019, Vol. 33 Issue (8): 1416-1421    https://doi.org/10.11896/cldb.17120075
  高分子与聚合物基复合材料 |
纤维素羧酸钠基半互穿高吸水凝胶的温控溶胀效果
高欣, 韩全青, 张恒, 陈克利
昆明理工大学化学工程学院,云南省高校制浆造纸工程研究中心,昆明 650500
Thermo-tunable Swelling Effect of Cellouronic Acid Sodium-based Superabsorbent Hydrogels
GAO Xin, HAN Qunqing, ZHANG Heng, CHEN Keli
Pulp and Paper Engineering Research Center of Yunnan Higher Education, Chemical Engineering Faculty, Kunming University of Science and Technology, Kunming 650500
下载:  全 文 ( PDF ) ( 4387KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 具有温控溶胀性的高吸水凝胶由于其独特的性能,如随环境温度微小变化,材料体积发生多种改变,在学术研究及工业应用领域都属于一种多用途、有前途的功能材料。纤维素羧酸钠(CAS)是一类通过纤维素选择性氧化反应得到的水溶性衍生物,但对其功能凝胶改性的研究鲜有报道。本工作以蔗髓为原料改性得到的CAS为线性聚合物,丙烯酰胺(AM)和二烯丙基二甲基氯化铵(DAC)为共聚单体,N,N′-亚甲基双丙烯酰胺(MBAM)为交联剂,采用序列合成法制得半互穿网络结构的CAS/聚合(AM-co-DAC)凝胶。利用红外光谱、X射线光电子能谱仪及扫描电镜对凝胶化学组成及表面形态进行表征,研究CAS、引发剂用量及介质性质对凝胶在不同温度作用下溶胀能力的影响。结果表明:制备的CAS基凝胶的溶胀度高且受温度控制;随着温度升高,溶胀度提升;溶胀能力及其温控灵敏性取决于凝胶的化学构成及溶液性质。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高欣
韩全青
张恒
陈克利
关键词:  高吸水凝胶  纤维素羧酸钠  聚(丙烯酰胺-co-二烯丙基二甲基氯化铵)  温敏性  溶胀性能    
Abstract: The high water-absorbent hydrogels with thermo-tunable swelling property represent a versatile and promising class of functional materials in both academic and industrial fields due to their unique characteristics, such as multifold change of volume in response to minute change in the ambient temperature. Cellouronic acid sodium (CAS) is a water-soluble cellulose derivative produced by a selective oxidation of cellulose, but its modification of functional hydrogels was less documented. Based on a sequential synthesis method, the copolymer network was firstly synthesized with acrylamide (AM) and diallyldimethylammonium chloride (DAC) as comonomers, N,N′-methylenebisacrylamide (MABM) as crosslin-ker. Then, linear polymer CAS obtained from bagasse pith, has been introduced into cross-linked poly(AM-co-DAC) to form thermo-sensitive semi-interpenetrating polymer networks (semi-IPNs). The chemical composition and morphology of hydrogel were characterized by FT-IR, XPS and SEM. The effects of CAS dosage, initiator charge and medium property on gel's swelling ability at various temperatures were also investigated. The results showed that the prepared CAS-based gels exhibited a high water-absorbency and temperature-tunable swelling property. The swelling degree enhanced with increasing ambient temperature. Both swelling ability and its thermo-sensitivity largely depended on the chemical structure of the semi-IPNs and the solvent property.
Key words:  superabsorbent hydrogel    cellouronic acid sodium    poly(acrylamide-co-diallyldimethylammonium chloride)    thermo-sensitive    swelling property
               出版日期:  2019-04-25      发布日期:  2019-04-28
ZTFLH:  O636.1+1  
基金资助: 国家自然科学基金(51363013);云南省教育厅资助性项目(2018js027);云南省人才培养项目(KKSY201605058)
作者简介:  高欣,昆明理工大学,副教授。2016年7月毕业于昆明理工大学环境化学专业,获工学博士学位。Email: drgaoxin@sina.com.cn
引用本文:    
高欣, 韩全青, 张恒, 陈克利. 纤维素羧酸钠基半互穿高吸水凝胶的温控溶胀效果[J]. 材料导报, 2019, 33(8): 1416-1421.
GAO Xin, HAN Qunqing, ZHANG Heng, CHEN Keli. Thermo-tunable Swelling Effect of Cellouronic Acid Sodium-based Superabsorbent Hydrogels. Materials Reports, 2019, 33(8): 1416-1421.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.17120075  或          http://www.mater-rep.com/CN/Y2019/V33/I8/1416
1 Gharekhani H, Olad A, Mirmohseni A, et al. Carbohydrate Polymers, 2017, 168, 1.
2 Fekete T, Borsa J, Takács E, et al. Carbohydrate Polymers, 2017, 166, 300.
3 Kang S H, Hong S G, Moon J. Cement and Concrete Research, 2017, 97, 73.
4 Wang Z, Ning A, Xie P, et al. Carbohydrate Polymers, 2017, 157, 48.
5 Adair A, Kaesaman A, Klinpituksa P. Polymer Testing, 2017, 64, 321.
6 Olad A, Pourkhiyabi M, Gharekhani H, et al. Carbohydrate Polymers, 2018, 190, 295.
7 Thakur S, Arotiba O A. Polymer Bulletin, 2018, 75(10), 4587.
8 McLaughlin J R, Abbott N L, Guymon C A. Polymer, 2018, 142, 119.
9 Chen H, Zhang S, Liu S, et al. Materials Review B:Research Papers, 2017, 31(10), 30(in Chinese).
陈航超,张素红,刘生玉,等. 材料导报:研究篇, 2017, 31(10), 30.
10 Cheng J L, Yin H Y, Feng Y J, et al. Polymer Materials Science and Engineering, 2016, 32(6), 118(in Chinese).
程金梁,殷鸿尧,冯玉军,等.高分子材料科学与工程, 2016, 32(6), 118.
11 Lee C H, Yi Y D, Park H R, et al. Fluid Phase Equilibria, 2016, 427, 594.
12 Tsutsui H, Moriyama M, Nakayama D, et al. Macromolecules, 2006, 39(6), 2291.
13 Ning J Y, Kubota K, Li G, et al. Reactive and Functional Polymers, 2013, 73(7), 969.
14 Gao X, Chen K L, Zhang H, et al. Archives of Acoustics, 2014, 39(2), 267.
15 Gao X, Chen K L, Zhang H, et al. Bioresources, 2014, 9(3), 4094.
16 Liu X P, Wang H Y, Zhang P, et al. Journal of Shandong University (Engineering Science), 2009, 39(3), 71(in Chinese).
刘晓平,王洪运,张鹏,等. 山东大学学报(工学版), 2009, 39(3), 71.
17 Wang X, Yue Q, Gao B, et al. Journal of Polymer Research, 2011, 18(5), 1067.
18 Wang X H, Tang L, Yang F F. European Polymer Journal, 2017, 92, 174.
19 Adair A, Kaesaman A, Klinpituksa P. Polymer Testing, 2017, 64, 321.
20 Dutta S and Dhara D. Polymer, 2015, 76, 62.
21 Lee H. Journal of Molecular Graphics and Modelling, 2016, 70, 246.
22 Olad A, Pourkhiyabi M, Gharekhani H, et al. Carbohydrate Polymers, 2018, 190, 295.
23 Ogawa K. Advances in Colloid and Interface Science, 2015, 226(SI), 115.
24 Isobe N, Noguchi K, Nishiyama Y, et al. Cellulose, 2013, 20(1), 97.
25 Aoki T, Kawashima M, Katono H, et al. Macromolecules, 1994, 27(4), 947.
26 Chikh L, Delhorbe V, Fichet O. Journal of Membrane Science, 2011, 368(1-2), 1.
27 Hu X, Wang Y, Zhang L, et al. Carbohydrate Polymers, 2017, 174, 171.
28 Chang C, Zhang L. Carbohydrate Polymers, 2011, 84(1), 40.
[1] 王裕祥,冯传良. 羧基化碳纳米管增强的杂化超分子水凝胶及其物理性能*[J]. 材料导报编辑部, 2017, 31(10): 41-46.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed