Please wait a minute...
材料导报  2024, Vol. 38 Issue (18): 23080153-7    https://doi.org/10.11896/cldb.23080153
  金属与金属基复合材料 |
600~1 000 ℃退火处理对FCC型CoxFeMnNi3-x合金组织演变及耐蚀性的影响
吴长军1,2,*, 朱付成1, 王权1, 彭浩平1,2, 刘亚1,2, 苏旭平1,2
1 常州大学材料科学与工程学院,江苏省材料表面科学与技术重点实验室,江苏 常州 213164
2 常州大学光伏科学与工程江苏协同创新中心,江苏 常州 213164
Effect of Annealing at 600—1 000 ℃ on Microstructure Evolution and Corrosion Resistance of the FCC-type CoxFeMnNi3-x Alloys
WU Changjun1,2,*, ZHU Fucheng1, WANG Quan1, PENG Haoping1,2, LIU Ya1,2, SU Xuping1,2
1 Jiangsu Key Laboratory of Materials Surface Science and Technology, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
2 Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
下载:  全 文 ( PDF ) ( 12396KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在CoCrFeMnNi合金及不锈钢中,Cr对合金的耐蚀性起到关键作用,但目前对无Cr的Co-Fe-Mn-Ni合金的组织演变及耐蚀性影响的研究较少。本工作使用电弧熔炼法制备了一系列FCC型Cox FeMnNi3-x合金,并在600 ℃、800 ℃、1 000 ℃真空退火120 h,实验研究不同退火温度下CoxFeMnNi3-x合金的组织演变及耐蚀性变化规律。结果表明,铸态下这些合金均为枝晶组织,Co含量的增加使得枝晶更加发达。合金的耐蚀性随着Co含量的增加(Ni含量的降低)而逐渐降低。600 ℃退火后,合金组织整体仍为编织网状枝晶,但枝晶明显淡化,开始向等轴晶演变,晶粒间距增大,耐蚀性降低。600 ℃退火后的Co1.0FeMnNi2.0合金自腐蚀电流密度(2.19×10-6 A·cm-2)比铸态时提高了一倍。800 ℃退火后,Co1.0FeMnNi2.0合金的组织由大量等轴晶组成,其余合金组织仍有枝晶未完全消退。较为稳定的等轴晶使得合金的耐蚀性能提升,自腐蚀电流密度降低至0.68×10-6 A·cm-2。退火温度提高到1 000 ℃,合金完全由粗大的等轴晶组成,晶粒间结合紧密。1 000 ℃退火后,Co1.0FeMnNi2.0合金自腐蚀电流密度为0.22×10-6 A·cm-2,拥有比304L不锈钢更高的耐蚀性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴长军
朱付成
王权
彭浩平
刘亚
苏旭平
关键词:  电弧熔炼  退火  高熵合金  显微组织  耐蚀性    
Abstract: Element Cr plays a critical role in the corrosion resistance of the CoCrFeMnNi alloy and stainless steel. However, there are few studies on microstructure evolution and corrosion resistance of the Cr-free Co-Fe-Mn-Ni alloys. In the present work, a series of Cox FeMnNi3-x alloys, with single FCC phase, were prepared by arc melting method and vacuum annealed at 600 ℃, 800 ℃, and 1 000 ℃ for 120 h, respectively. The microstructure evolution and corrosion resistance of these alloys at different states were investigated. The results show that all the as-cast Cox-FeMnNi3-x alloys are composed of dendrites structure, which developed with Co content. The corrosion resistance of the as-cast alloys decreases with the increase of Co content (the decrease of Ni). After 600 ℃ annealing, the alloy is still braided network dendrite. But the dendrite obviously weakens and begins to evolve to equiaxed grain. The grain boundary coarsened and the corrosion resistance reduced. The corrosion current density of 600 ℃ annealed Co1.0FeMnNi2.0 alloy (2.19×10-6 A·cm-2) becomes twice than that of the as-cast state. After 800 ℃ annealing, the Co1.0FeMnNi2.0 alloy is composed of many equiaxed grains, while the other alloys still contain some dendrites. The stable equiaxed grain improves the corrosion resistance of the alloy, and the corrosion current density decreases to 0.68×10-6 A·cm-2. When the annealing temperature increases to 1 000 ℃, the alloy is totally composed of coarse equiaxed grains, and the grains are closely bonded. The corrosion current density of 1 000 ℃ annealed Co1.0FeMnNi2.0 alloy decreases to 0.22×10-6 A·cm-2, which is better than that of 304L stainless steel.
Key words:  arc melting    annealing    high entropy alloy    microstructure    corrosion resistance
发布日期:  2024-10-12
ZTFLH:  TG113.12  
基金资助: 国家自然科学基金(52271005; 51771035);江苏省研究生科研与实践创新计划项目(SJCX23_1479)
通讯作者:  *吴长军,通信作者,常州大学材料科学与工程学院教授、博士研究生导师。2006年湘潭大学金属材料工程专业本科毕业,2011年湘潭大学材料学专业博士毕业。2015—2016年在韩国浦项科技大学进行博士后研究工作。目前主要从事高性能金属材料、高熵合金、合金相图及材料设计、材料表面处理等方面的研究工作。获国家发明专利授权20余项,发表论文80余篇,包括Journal of Alloys and Compounds、Transactions of Nonferrous Metals Society of China、Calphad、Vacuum等。wucj@cczu.edu.cn   
引用本文:    
吴长军, 朱付成, 王权, 彭浩平, 刘亚, 苏旭平. 600~1 000 ℃退火处理对FCC型CoxFeMnNi3-x合金组织演变及耐蚀性的影响[J]. 材料导报, 2024, 38(18): 23080153-7.
WU Changjun, ZHU Fucheng, WANG Quan, PENG Haoping, LIU Ya, SU Xuping. Effect of Annealing at 600—1 000 ℃ on Microstructure Evolution and Corrosion Resistance of the FCC-type CoxFeMnNi3-x Alloys. Materials Reports, 2024, 38(18): 23080153-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080153  或          http://www.mater-rep.com/CN/Y2024/V38/I18/23080153
1 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299.
2 Shang X, Wang Z, He F, et al. Science China-Technological Sciences, 2018, 61(2), 189.
3 Gao W, Yu Z H, Yan Y W, et al. Journal of Materials Engineering, 2023, 51(2), 91 (in Chinese).
高炜, 余竹焕, 阎亚雯, 等. 材料工程, 2023, 51(2), 91.
4 Uporov S, Estemirova S K, Bykov V A, et al. Intermetallics, 2020, 122, 106802.
5 Strumza E, Hayun S. Journal of Alloys and Compounds, 2021, 856, 158220.
6 Parakh A, Vaidya M, Kumar N, et al. Journal of Alloys and Compounds, 2021, 863, 158056.
7 Geng Y, Tan H, Cheng J, et al. Tribology International, 2020, 151, 10644.
8 Cantor B, Chang I, Knight P, et al. Materials Science and Engineering:A, 2004, 375, 213.
9 Gludovatz B, Hohenwarter A, Catoor D, et al. Science, 2014, 345(6201), 1153.
10 Tu J, Liu L, Ding S R, et al. Chinese Journal of Materials Research, 2019, 33(6), 427 (in Chinese).
涂坚, 刘雷, 丁石润, 等. 材料研究学报, 2019, 33(6), 427.
11 Mahaffey J, Vackel A, Whetten S, et al. Journal of Thermal Spray Technology, 2022, 31(4), 1143.
12 Zhao B Z, Zhu M, Yuan Y F, et al. Journal of Chinese Society for Corrosion and Protection, 2022, 42(3), 425 (in Chinese).
赵宝珠, 朱敏, 袁永锋, 等. 中国腐蚀与防护学报, 2022, 42(3), 425.
13 Lu C W, Lu Y S, Lai Z H, et al. Journal of Alloys and Compounds, 2020, 842, 155824.
14 Ding X, Du X J, Ma X Y, et al. Materials for Mechanical Engineering, 2023, 47(2), 54 (in Chinese).
丁骁, 杜晓洁, 马新元, 等. 机械工程材料, 2023, 47(2), 54.
15 Sun H, Wu H B, Zhang Y Y, et al. Journal of Materials Engineering, 2022, 50(11), 127 (in Chinese).
孙辉, 武会宾, 张游游, 等. 材料工程, 2022, 50(11), 127.
16 Huang M P, Ren Y, Ren Q, et al. Materials Reports, 2023 (Z1), 1 (in Chinese).
黄敏平, 任英, 任强, 等. 材料导报, 2023 (Z1), 1.
17 Ye Q, Feng K, Li Z, et al. Applied Surface Science, 2017, 396, 1420.
18 Salishchev G A, Tikhonovsky M A, Shaysultanov D G, et al. Journal of Alloys and Compounds, 2014, 591, 11.
19 Laurent-Brocq M, Akhatova A, Perriere L, et al. Acta Materialia, 2015, 88, 355.
20 Zhang C L, Zhu M, Yuan Y F, et al. Journal of Materials Engineering and Performance, 2024, 33, 541.
21 Cao S X, Zhu M, Yuan Y F, et al. Journal of Materials Engineering and Performance, 2023, 32(16), 7545.
22 Luo H, Li Z, Mingers A M, et al. Corrosion Science, 2018, 134, 131.
23 Jia X Q, Xu Z L, Zhou S X, et al. Surface Technology, 2023, 52(2), 272 (in Chinese).
贾玺泉, 徐震霖, 周生璇, 等. 表面技术, 2023, 52(2), 272.
24 Zhu M, Zhao B, Yuan Y, et al. Corrosion Communications, 2021, 3, 45.
25 Zhu M, Zhao B, Yuan Y, et al. Materials Chemistry and Physics, 2022, 279, 12575.
26 Aiso T, Nishimoto M, Muto I, et al. Materials Transactions, 2021, 62(11), 1677.
27 Wang Q, Wu C J, Xu X W, et al. Materials Reports, 2022, 36(11), 143 (in Chinese).
王权, 吴长军, 徐雪薇, 等. 材料导报, 2022, 36(11), 143.
28 Xin Y F, Wang W L, Zheng F Q. Hot Working Technology, 2020, 49(10), 37 (in Chinese).
邢逸凡, 王伟丽, 郑风勤. 热加工工艺, 2020, 49(10), 37.
29 Hsu K M, Chen S H, Lin C S. Corrosion Science, 2021, 190, 109694.
30 Gerard A Y, Han J, Mcdonnell S J, et al. Acta Materialia, 2020, 198, 121.
31 Feng H, Li H B, Dai J, et al. Corrosion Science, 2022, 204, 110396.
32 Zhao Y, Zhu Z, Zhao X, et al. Corrosion Science, 2023, 213, 110992.
33 Zhang Y K, Lin D Y, Han Y D, et al. Smart Manufacturing, 2022, 1(1), 2150002.
34 Li X, Zhou P, Feng H, et al. Corrosion Science, 2022, 196, 110016.
35 Xia F, Li Z, Ma M, et al. International Journal of Pressure Vessels and Piping, 2023, 203, 104949.
36 Hamdy A S, El-shenawy E, El-bitar T. International Journal of Electrochemical Science, 2006, 1(4), 171.
37 Kumar N, Fusco M, Komarasamy M, et al. Journal of Nuclear Materials, 2017, 495, 154.
38 Shi Y, Collins L, Balke N, et al. Applied Surface Science, 2018, 439, 533.
39 Yang H O,Shang X L, Wang L L, et al. Acta Metallurgica Sinica, 2018, 54(6), 905 (in Chinese).
杨海欧, 尚旭亮, 王理林, 等. 金属学报, 2018, 54(6), 905.
40 Shi Y, Yang B, Xie X, et al. Corrosion Science, 2017, 119, 33.
41 Muoz A I, Antón J G, Guión J, et al. Corrosion Science, 2007, 49(8), 3200.
42 Carnot A, Frateur I, Zanna S, et al. Corrosion Science, 2003, 45(11), 2513.
[1] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[2] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[3] 董颖辉, 陈飞寰, 蔡召兵, 林广沛, 卢冰文, 张坡, 古乐. 激光熔覆MoNbTaVW难熔高熵合金涂层微动磨损性能[J]. 材料导报, 2024, 38(7): 22100174-6.
[4] 赵清平, 亢淑梅, 邹方正, 朱忠博, 李鹏宇. 甘油微胶囊搭载硅烷环氧共混涂层的耐蚀性研究[J]. 材料导报, 2024, 38(7): 22080166-6.
[5] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[6] 张明晨, 郭瑞鹏, 张勇. 高熵硬质合金WC-AlCo0.4CrFeNi2.7的制备及表征[J]. 材料导报, 2024, 38(4): 22060288-6.
[7] 张健, 朱智浩, 张爽, 董闯. 高Al含量的亚稳β型Ti-Al-Mo-Nb-V系列钛合金的组织与力学性能[J]. 材料导报, 2024, 38(2): 22040297-6.
[8] 王勇, 孙天昊, 李永存, 孙丽丽, 贾鑫, 张旭昀. 高压下NbMoTaWV难熔高熵合金结构和力学性能的第一性原理研究[J]. 材料导报, 2024, 38(18): 22120037-6.
[9] 郭晖, 曹晓卿, 孙逸舟, 林鹏, 刘亚玲, 李培友. 轻质高熵合金微观组织及力学性能研究进展[J]. 材料导报, 2024, 38(18): 23020177-10.
[10] 曹晓君, 刘美辰, 杨康, 马义明, 王俊杰, 黎军顽. 可降解铸态Zn-Cu-Sr合金的组织与性能[J]. 材料导报, 2024, 38(18): 23060210-7.
[11] 王婷, 胡斌, 王文琴, 王非凡. 微弧火花沉积Zr基非晶涂层的组织及性能[J]. 材料导报, 2024, 38(16): 22090308-6.
[12] 马云路, 杨劼人, 刘泽栋, 陈瑞润. TiAl金属间化合物定向技术研究进展[J]. 材料导报, 2024, 38(15): 23100177-12.
[13] 贾建, 罗俊鹏, 张浩鹏, 闫婷, 侯琼, 张义文. W元素在新型镍基粉末高温合金中的强化作用[J]. 材料导报, 2024, 38(15): 23110103-6.
[14] 彭超, 赵勇, 张芳, 龙旭, 林金保, 常超. TixNbMoTaW系高熵合金性能的第一性原理计算[J]. 材料导报, 2024, 38(15): 23040229-8.
[15] 魏新龙, 戴凡昌, 付二广, 班傲林, 张超. 单道激光熔覆高熵合金工艺优化及复合涂层耐冲蚀性能研究[J]. 材料导报, 2024, 38(14): 23020130-7.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed