Effect of Annealing at 600—1 000 ℃ on Microstructure Evolution and Corrosion Resistance of the FCC-type CoxFeMnNi3-x Alloys
WU Changjun1,2,*, ZHU Fucheng1, WANG Quan1, PENG Haoping1,2, LIU Ya1,2, SU Xuping1,2
1 Jiangsu Key Laboratory of Materials Surface Science and Technology, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China 2 Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
Abstract: Element Cr plays a critical role in the corrosion resistance of the CoCrFeMnNi alloy and stainless steel. However, there are few studies on microstructure evolution and corrosion resistance of the Cr-free Co-Fe-Mn-Ni alloys. In the present work, a series of Cox FeMnNi3-x alloys, with single FCC phase, were prepared by arc melting method and vacuum annealed at 600 ℃, 800 ℃, and 1 000 ℃ for 120 h, respectively. The microstructure evolution and corrosion resistance of these alloys at different states were investigated. The results show that all the as-cast Cox-FeMnNi3-x alloys are composed of dendrites structure, which developed with Co content. The corrosion resistance of the as-cast alloys decreases with the increase of Co content (the decrease of Ni). After 600 ℃ annealing, the alloy is still braided network dendrite. But the dendrite obviously weakens and begins to evolve to equiaxed grain. The grain boundary coarsened and the corrosion resistance reduced. The corrosion current density of 600 ℃ annealed Co1.0FeMnNi2.0 alloy (2.19×10-6 A·cm-2) becomes twice than that of the as-cast state. After 800 ℃ annealing, the Co1.0FeMnNi2.0 alloy is composed of many equiaxed grains, while the other alloys still contain some dendrites. The stable equiaxed grain improves the corrosion resistance of the alloy, and the corrosion current density decreases to 0.68×10-6 A·cm-2. When the annealing temperature increases to 1 000 ℃, the alloy is totally composed of coarse equiaxed grains, and the grains are closely bonded. The corrosion current density of 1 000 ℃ annealed Co1.0FeMnNi2.0 alloy decreases to 0.22×10-6 A·cm-2, which is better than that of 304L stainless steel.
通讯作者:
*吴长军,通信作者,常州大学材料科学与工程学院教授、博士研究生导师。2006年湘潭大学金属材料工程专业本科毕业,2011年湘潭大学材料学专业博士毕业。2015—2016年在韩国浦项科技大学进行博士后研究工作。目前主要从事高性能金属材料、高熵合金、合金相图及材料设计、材料表面处理等方面的研究工作。获国家发明专利授权20余项,发表论文80余篇,包括Journal of Alloys and Compounds、Transactions of Nonferrous Metals Society of China、Calphad、Vacuum等。wucj@cczu.edu.cn
引用本文:
吴长军, 朱付成, 王权, 彭浩平, 刘亚, 苏旭平. 600~1 000 ℃退火处理对FCC型CoxFeMnNi3-x合金组织演变及耐蚀性的影响[J]. 材料导报, 2024, 38(18): 23080153-7.
WU Changjun, ZHU Fucheng, WANG Quan, PENG Haoping, LIU Ya, SU Xuping. Effect of Annealing at 600—1 000 ℃ on Microstructure Evolution and Corrosion Resistance of the FCC-type CoxFeMnNi3-x Alloys. Materials Reports, 2024, 38(18): 23080153-7.
1 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299. 2 Shang X, Wang Z, He F, et al. Science China-Technological Sciences, 2018, 61(2), 189. 3 Gao W, Yu Z H, Yan Y W, et al. Journal of Materials Engineering, 2023, 51(2), 91 (in Chinese). 高炜, 余竹焕, 阎亚雯, 等. 材料工程, 2023, 51(2), 91. 4 Uporov S, Estemirova S K, Bykov V A, et al. Intermetallics, 2020, 122, 106802. 5 Strumza E, Hayun S. Journal of Alloys and Compounds, 2021, 856, 158220. 6 Parakh A, Vaidya M, Kumar N, et al. Journal of Alloys and Compounds, 2021, 863, 158056. 7 Geng Y, Tan H, Cheng J, et al. Tribology International, 2020, 151, 10644. 8 Cantor B, Chang I, Knight P, et al. Materials Science and Engineering:A, 2004, 375, 213. 9 Gludovatz B, Hohenwarter A, Catoor D, et al. Science, 2014, 345(6201), 1153. 10 Tu J, Liu L, Ding S R, et al. Chinese Journal of Materials Research, 2019, 33(6), 427 (in Chinese). 涂坚, 刘雷, 丁石润, 等. 材料研究学报, 2019, 33(6), 427. 11 Mahaffey J, Vackel A, Whetten S, et al. Journal of Thermal Spray Technology, 2022, 31(4), 1143. 12 Zhao B Z, Zhu M, Yuan Y F, et al. Journal of Chinese Society for Corrosion and Protection, 2022, 42(3), 425 (in Chinese). 赵宝珠, 朱敏, 袁永锋, 等. 中国腐蚀与防护学报, 2022, 42(3), 425. 13 Lu C W, Lu Y S, Lai Z H, et al. Journal of Alloys and Compounds, 2020, 842, 155824. 14 Ding X, Du X J, Ma X Y, et al. Materials for Mechanical Engineering, 2023, 47(2), 54 (in Chinese). 丁骁, 杜晓洁, 马新元, 等. 机械工程材料, 2023, 47(2), 54. 15 Sun H, Wu H B, Zhang Y Y, et al. Journal of Materials Engineering, 2022, 50(11), 127 (in Chinese). 孙辉, 武会宾, 张游游, 等. 材料工程, 2022, 50(11), 127. 16 Huang M P, Ren Y, Ren Q, et al. Materials Reports, 2023 (Z1), 1 (in Chinese). 黄敏平, 任英, 任强, 等. 材料导报, 2023 (Z1), 1. 17 Ye Q, Feng K, Li Z, et al. Applied Surface Science, 2017, 396, 1420. 18 Salishchev G A, Tikhonovsky M A, Shaysultanov D G, et al. Journal of Alloys and Compounds, 2014, 591, 11. 19 Laurent-Brocq M, Akhatova A, Perriere L, et al. Acta Materialia, 2015, 88, 355. 20 Zhang C L, Zhu M, Yuan Y F, et al. Journal of Materials Engineering and Performance, 2024, 33, 541. 21 Cao S X, Zhu M, Yuan Y F, et al. Journal of Materials Engineering and Performance, 2023, 32(16), 7545. 22 Luo H, Li Z, Mingers A M, et al. Corrosion Science, 2018, 134, 131. 23 Jia X Q, Xu Z L, Zhou S X, et al. Surface Technology, 2023, 52(2), 272 (in Chinese). 贾玺泉, 徐震霖, 周生璇, 等. 表面技术, 2023, 52(2), 272. 24 Zhu M, Zhao B, Yuan Y, et al. Corrosion Communications, 2021, 3, 45. 25 Zhu M, Zhao B, Yuan Y, et al. Materials Chemistry and Physics, 2022, 279, 12575. 26 Aiso T, Nishimoto M, Muto I, et al. Materials Transactions, 2021, 62(11), 1677. 27 Wang Q, Wu C J, Xu X W, et al. Materials Reports, 2022, 36(11), 143 (in Chinese). 王权, 吴长军, 徐雪薇, 等. 材料导报, 2022, 36(11), 143. 28 Xin Y F, Wang W L, Zheng F Q. Hot Working Technology, 2020, 49(10), 37 (in Chinese). 邢逸凡, 王伟丽, 郑风勤. 热加工工艺, 2020, 49(10), 37. 29 Hsu K M, Chen S H, Lin C S. Corrosion Science, 2021, 190, 109694. 30 Gerard A Y, Han J, Mcdonnell S J, et al. Acta Materialia, 2020, 198, 121. 31 Feng H, Li H B, Dai J, et al. Corrosion Science, 2022, 204, 110396. 32 Zhao Y, Zhu Z, Zhao X, et al. Corrosion Science, 2023, 213, 110992. 33 Zhang Y K, Lin D Y, Han Y D, et al. Smart Manufacturing, 2022, 1(1), 2150002. 34 Li X, Zhou P, Feng H, et al. Corrosion Science, 2022, 196, 110016. 35 Xia F, Li Z, Ma M, et al. International Journal of Pressure Vessels and Piping, 2023, 203, 104949. 36 Hamdy A S, El-shenawy E, El-bitar T. International Journal of Electrochemical Science, 2006, 1(4), 171. 37 Kumar N, Fusco M, Komarasamy M, et al. Journal of Nuclear Materials, 2017, 495, 154. 38 Shi Y, Collins L, Balke N, et al. Applied Surface Science, 2018, 439, 533. 39 Yang H O,Shang X L, Wang L L, et al. Acta Metallurgica Sinica, 2018, 54(6), 905 (in Chinese). 杨海欧, 尚旭亮, 王理林, 等. 金属学报, 2018, 54(6), 905. 40 Shi Y, Yang B, Xie X, et al. Corrosion Science, 2017, 119, 33. 41 Muoz A I, Antón J G, Guión J, et al. Corrosion Science, 2007, 49(8), 3200. 42 Carnot A, Frateur I, Zanna S, et al. Corrosion Science, 2003, 45(11), 2513.