Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 603-606    
  高分子与聚合物基复合材料 |
2.5维机织复合材料经纬向力学性能实验研究
李姗姗1,2, 张雷1,2, 王京红1,2, 罗欣1,2
1 中国纺织科学研究院有限公司研究开发中心,北京 100025
2 生物源纤维制造技术国家重点实验室,北京 100025
Experimental Study on the Mechanical Properties of 2.5D Woven Composites
LI Shanshan1,2, ZHANG Lei1,2, WANG Jinghong1,2, LUO Xin1,2
1 China Textile Academy Co., Ltd, Beijing 100025, China
2 State Key Laboratory of Biobased Fiber Manufacturing Technology, Beijing 100025, China
下载:  全 文 ( PDF ) ( 5009KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文基于2-2带衬经结构的层-层正交角联锁织物结构优势,制备了相应的复合材料,进行了拉伸性能和剪切性能试验,分析了2.5维机织复合材料经纬向的力学性能。研究发现,在经向增强2/2角联锁织物增强复合材料拉伸试验中,试件纬向的最大拉伸强度较经向大,且经纬向拉伸断口都较为规整;在经向增强2/2角联锁织物复合材料短梁弯层间剪切强度测试中,纬向达到最大破坏载荷时,试件的破坏程度较经向大,部分纤维从层间被剥离出来,而经向没有明显的破坏痕迹,且纬向最大层间剪切强度大于经向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李姗姗
张雷
王京红
罗欣
关键词:  2.5维机织  复合材料  经纬向  拉伸性能  剪切性能    
Abstract: In this paper, based on the structural advantages of 2-2 layer by layer orthogonal angle interlock fabric with lining warp structure, the corresponding composite materials were prepared, the tensile and shear properties were tested, and the mechanical properties of 2.5D woven composite materials in warp and weft direction were analyzed. It was found that the maximum tensile strength of the specimen in the longitudinal direction is larger than that in the longitudinal direction, and the longitudinal and latitudinal tensile fractures are more regular in the tensile test of the warp reinforced 2/2-angle interlock fabric reinforced composite; in the interlaminar shear strength test of the short beam of the warp reinforced 2/2-angle interlock fabric composite, when the longitudinal direction reaches the maximum failure load, the damage degree of the specimen is larger than that in the longitudinal direction, and some fibers are from the layer. The maximum interlaminar shear strength in the latitudinal direction is greater than that in the meridional direction.
Key words:  2.5D woven    composite    warp and weft    tensile property    shear property
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  TB332  
通讯作者:  lishanshanliu@163.com   
作者简介:  李姗姗,中国纺织科学研究院有限公司高级工程师。2007年9月至2010年3月,在天津工业大学获得纺织工程专业硕士学位,毕业后至今一直在中国纺织科学研究院有限公司从事科研开发工作。申请国家发明专利12项,其中授权5项。主要围绕纺织复合材料装备、织造工艺及复合成型等方面开展相关基础理论和应用研究。
引用本文:    
李姗姗, 张雷, 王京红, 罗欣. 2.5维机织复合材料经纬向力学性能实验研究[J]. 材料导报, 2020, 34(Z2): 603-606.
LI Shanshan, ZHANG Lei, WANG Jinghong, LUO Xin. Experimental Study on the Mechanical Properties of 2.5D Woven Composites. Materials Reports, 2020, 34(Z2): 603-606.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/603
1 Pearce N, Summerscales J.Composites Manufacturing, 1995, 6(1),15.
2 Robitaille F, Gauvin R. Polymer Composite,1998,19(5),543.
3 Robitaille F, Gauvin R. Polymer Composites,1998,19(2),198.
4 杨彩云,李嘉禄.东华大学学报, 2005, 31(5), 53.
5 赵哲,温卫东,宋健, 等.航空动力学报, 2017, 32(11), 2729.
6 曹海建,钱坤,盛东晓.玻璃钢/复合材料, 2009, 3(5), 13.
7 季乐,周光明,王新峰, 等.航空计算技术, 2016, 46(1), 23.
8 郭瑞彦,张国利,王志鹏,等. 天津纺织科技, 2017(1),18.
9 张玉龙. 先进复合材料制造技术手册,机械工业出版社,2003.
[1] 申欣, 孟昭旭, 廉鹤. 纳米羟基磷灰石复合材料在癌症治疗中的应用进展[J]. 材料导报, 2020, 34(Z2): 88-90.
[2] 侯若梦, 贾瑛, 黄远征, 沈可可. 石墨烯复合材料在空气净化中的应用研究进展[J]. 材料导报, 2020, 34(Z2): 104-111.
[3] 贺龙朝, 荆磊, 余森, 徐云浩, 于振涛. 医用可降解镁基复合材料的研究现状及趋势[J]. 材料导报, 2020, 34(Z2): 323-326.
[4] 赵惠. 成型工艺对钨基复合材料界面组织和性能的影响[J]. 材料导报, 2020, 34(Z2): 351-355.
[5] 臧恒波, 乔菁. 无压浸渗工艺对Al2O3/Al-Mg-Si复合材料微观组织和力学性能的影响[J]. 材料导报, 2020, 34(Z2): 371-375.
[6] 于镇洋, 吕本元, 何威. 冷轧对原位生长三维石墨烯/铜基复合材料性能的影响[J]. 材料导报, 2020, 34(Z2): 390-394.
[7] 郝新超, 薛斌. 复合材料疲劳强度分布与疲劳验证载荷放大系数[J]. 材料导报, 2020, 34(Z2): 447-452.
[8] 王鑫, 张志彬, 胡振峰. 沸石分子筛在金属腐蚀防护领域的应用前景[J]. 材料导报, 2020, 34(Z2): 453-456.
[9] 车会凌, 赵元轶, 冉雄雄, 董皓月, 匡颖, 高姗姗. 不同形貌的纳米二氧化硅制备方法及其对高分子复合材料力学性能的影响综述[J]. 材料导报, 2020, 34(Z2): 484-489.
[10] 宋寒, 徐春晓, 王湘宁, 刘韬, 苏力军, 孙阔, 郭慧, 李文静. 不同树脂前驱体配比对无机酚醛气凝胶隔热复合材料性能的影响研究[J]. 材料导报, 2020, 34(Z2): 525-527.
[11] 李范, 张杨, 朱利民. 复合材料钻孔缺陷超声检测技术研究进展[J]. 材料导报, 2020, 34(Z2): 528-533.
[12] 林欢, 李万利, 蔡利海, 刘文言. 剪切增稠纤维复合材料的研究进展[J]. 材料导报, 2020, 34(Z2): 549-554.
[13] 刘克健, 高玉龙. 一种快速固化的环氧树脂基预浸料及其性能[J]. 材料导报, 2020, 34(Z2): 576-579.
[14] 魏凤春, 李明哲, 张晓, 关春龙. 碳纤维增强砂轮基体的有限元模态分析研究[J]. 材料导报, 2020, 34(Z2): 590-593.
[15] 杨松, 盛双华, 刘应开. 基于Au修饰的花状V2O5的表面增强拉曼散射研究[J]. 材料导报, 2020, 34(Z1): 34-38.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed