Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 6-10    
  无机非金属及其复合材料 |
原位合成法制备UO2-石墨烯复合燃料机理与性能研究
吴学志, 尹邦跃
中国原子能科学研究院反应堆工程技术研究部,北京 102413
Mechanism and Properties of UO2-Graphene Composite Fuel Prepared by in Situ Synthesis
WU Xuezhi, YIN Bangyue
Reactor Engineering Technology Research Division, China Institute of Atomic Energy, Beijing 102413, China
下载:  全 文 ( PDF ) ( 3512KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 二氧化铀(UO2)是目前核电站主要应用的核燃料,具有熔点高、抗辐照性能强、与包壳和冷却剂相容性好等优点。但UO2燃料热导率低,当反应堆燃耗较深时,极易发生燃料肿胀,使燃料与包壳发生机械与化学相互作用(PCMI),增大反应堆安全风险,故提高UO2燃料热导率是未来高性能核燃料改性研究的重点方向。石墨烯具有高熔点、高导热率以及高温稳定性等优势,是UO2燃料芯块中一种非常值得探索的第二相添加物。但目前石墨烯掺杂的普遍工艺为物理混合法,很难解决石墨烯与大比重陶瓷材料的混合均匀性问题,限制了其掺杂性能的发挥。本工作采用一种以石墨烯为形核,硝酸铀酰溶液与氨水在形核上反应沉积的原位合成法,通过控制反应参数,制备了掺杂2%(体积分数,下同)、4%、6%和8%石墨烯的UO2-石墨烯复合燃料粉末,通过放电等离子烧结工艺(SPS)制备得到复合燃料芯块,探讨了工艺机理,测试了燃料性能。结果表明:原位合成法制备UO2-石墨烯混合粉末的均匀度可达96.39%;相结构分析显示,1 450 ℃烧结芯块中只存在UO2和石墨烯两种相结构,石墨烯与UO2未发生反应而破坏;掺杂2%、4%、6%和8%石墨烯的原位合成法芯块密度分别为95.56%TD、95.32%TD、95.08%TD和94.76%TD,芯块密度未因石墨烯掺杂量增加而大幅度下降;芯块在20 ℃热导率分别提高12.27%、20.13%、27.47%和34.13%,芯块在1 000 ℃热导率分别提高18.36%、35.00%、47.07%和58.93%,石墨烯在燃料高温服役阶段性能表现更为优异,弥补了UO2在高温时热导率更低的缺点;由SEM可见,原位合成法制备的芯块晶粒尺寸在10~30 μm,晶粒间结合致密,晶界处无明显气孔存在,石墨烯被UO2均匀包覆,通过形成桥联导热网,提高了芯块热导率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴学志
尹邦跃
关键词:  石墨烯  原位合成  制备  燃料  热导率    
Abstract: Uranium dioxide is the main nuclear fuel used in nuclear power plants. It has the advantages of high melting point, high radiation resistance and good compatibility with cladding and coolant. However, the thermal conductivity of UO2 fuel is low, and when the reactor burnup is deep, the fuel is prone to swell, which leads to the mechanical and chemical interaction (PCMI) between fuel and cladding, which increases the safety risk of the reactor, improving the thermal conductivity of UO2 fuel is the key direction of the future research on the modification of high performance nuclear fuel. Graphene has the advantages of high melting point, high thermal conductivity and high temperature stability. It is a valuable second-phase additive in UO2 fuel pellets. However, at present, the general process of graphene doping is physical mixing, so it is difficult to solve the problem of mixing uniformity between graphene and high density ceramic materials, which limits its doping performance. In this paper, a kind of nucleation method based on graphene and in situ synthesis of uranyl nitrate solution and ammonia water on nucleation was used, by controlling the reaction parameters, UO2-graphene composite fuel powders doped with 2vol%,4vol%,6vol% and 8vol% graphene were prepared, composite fuel pellets were prepared by spark plasma sintering (SPS). The process mechanism and fuel properties were investigated. The results show that the uniformity of UO2-graphene powder prepared by in situ synthesis method is up to 96.39%; The analysis of phase structure show that only UO2 and graphene exist in the sintered pellets at 1 450 ℃, the graphene is not destroyed by reacting with UO2; the density of in situ synthesis pellets doped with 2vol%,4vol%,6vol% and 8vol% graphene are 95.56% TD, 95.32% TD, 95.08% TD and 94.76% TD respectively; the thermal conductivity of pellet at 20 ℃ increase by 12.27%, 20.13%, 27.47% and 34.13% respectively, the thermal conductivity of pellet at 1 000 ℃ increase by 18.36%, 35.00%, 47.07% and 58.93% respectively, graphene has better performance in the high temperature ser-vice stage of fuel, which makes up for the disadvantage of lower thermal conductivity of UO2 at high temperature. The results of SEM show that the grain size of the pellet prepared by in-situ synthesis method is 10~ 30 μm, there is no obvious pore at the grain boundary, graphene is uniformly coated by UO2, the thermal conductivity of the pellet is improved by forming a bridging heat conduction network.
Key words:  graphene    in situ synthesis    prepare    fuel    thermal conductivity
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  TL352.21  
通讯作者:  25871605@qq.com   
作者简介:  吴学志,中国原子能科学研究院副研究员。2006年9月至2016年8月,在中国原子能科学研究院获得核能科学与工程硕士学位和核燃料循环与材料专业工学博士学位,毕业后留院从事科研工作。担任多项国家重点科研课题负责人,申请国家发明专利6项,其中授权4项。研究工作包括压水堆、空间核动力以及快堆用先进核燃料与材料的基础理论和应用研究。
引用本文:    
吴学志, 尹邦跃. 原位合成法制备UO2-石墨烯复合燃料机理与性能研究[J]. 材料导报, 2020, 34(Z2): 6-10.
WU Xuezhi, YIN Bangyue. Mechanism and Properties of UO2-Graphene Composite Fuel Prepared by in Situ Synthesis. Materials Reports, 2020, 34(Z2): 6-10.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/6
1 Fink J K,Chasanov M G,Leibowit Z. Journal of Nuclear Materials,1981, 102,17.
2 Brandt R,Neuer G. Journal of Non-Equilibrium Thermodynamics,1976, 1,3.
3 Harding J H,Martin D J. Journal of Nuclear Materials,1989, 166,223.
4 Latta R E. Journal of Nuclear Materials,1970, 35(2),195.
5 Lambert Bates J. Journal of Nuclear Materials, 1970, 36(2),234.
6 程亮,张鹏程. 材料导报:综述篇,2018, 32(7), 2161.
7 张芸秋, 梁勇明, 周建新.化学学报,2014,72(3),367.
8 刘波,彭同江,孙红娟. 材料导报:综述篇,2016, 30(6),1154.
9 胡忠良,陈艺锋,李娜,等. 功能材料,2014,45(S2),16.
10 Seung W L, Hyoung T K.Nuclear Engineering and Design, 2013, 257, 139.
[1] 宋显珠, 郑明月, 肖劲松, 张镇. 氢燃料电池关键材料发展现状及研究进展[J]. 材料导报, 2020, 34(Z2): 1-5.
[2] 侯若梦, 贾瑛, 黄远征, 沈可可. 石墨烯复合材料在空气净化中的应用研究进展[J]. 材料导报, 2020, 34(Z2): 104-111.
[3] 陈小明, 伏利, 苏建灏, 刘伟, 李育洛, 毛鹏展, 张磊, 惠希东. AlON陶瓷的研究现状与发展趋势[J]. 材料导报, 2020, 34(Z2): 117-122.
[4] 胡洁琼, 谢明, 陈永泰, 杨有才, 方继恒, 范小通, 李爱坤. Au-Pt-Ni三元催化剂体系纳米相图的研究进展[J]. 材料导报, 2020, 34(Z2): 338-343.
[5] 于镇洋, 吕本元, 何威. 冷轧对原位生长三维石墨烯/铜基复合材料性能的影响[J]. 材料导报, 2020, 34(Z2): 390-394.
[6] 王梦柯, 邱志成, 于春晓. 聚酰胺6/碳纳米复合材料的研究进展[J]. 材料导报, 2020, 34(Z2): 555-561.
[7] 魏声培. 分子印迹型二氧化钛的制备方法研究进展[J]. 材料导报, 2020, 34(Z1): 22-25.
[8] 他进国, 黄一凡, 甄小娟. 500 keV质子辐照对氧化石墨烯薄膜材料的影响研究[J]. 材料导报, 2020, 34(Z1): 39-42.
[9] 莫若飞, 杨玉婷, 潘可, 赵立春. 石墨烯及其衍生物在中医药领域中的应用研究进展[J]. 材料导报, 2020, 34(Z1): 58-62.
[10] 王永红, 杨倩倩, 刘辰, 刘会斌, 林晨, 肖鹏飞, 巩凌峰. 非金属超疏水纳米涂层技术的研究进展[J]. 材料导报, 2020, 34(Z1): 66-71.
[11] 黄江锋, 刘鸿, 刘启斌, 韦康, 白家峰, 王弘, 黄宇亮, 韦祎, 兰柳妮, 冯守爱. 石墨烯-纳米SiO2气凝胶对巴豆醛的吸附性研究[J]. 材料导报, 2020, 34(Z1): 82-85.
[12] 吴学志, 尹邦跃, 郑新海. 碳纳米管增强UO2燃料力学性能研究[J]. 材料导报, 2020, 34(Z1): 153-156.
[13] 赵秋萍, 钱庆一, 张斌, 牟志星, 张兴凯. 质子交换膜燃料电池金属双极板表面碳基防护镀层研究进展[J]. 材料导报, 2020, 34(Z1): 395-399.
[14] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[15] 方敏, 王璐, 侯佳欣, 南晓茹, 赵彬. 丝素蛋白复合石墨烯类材料在生物医学领域中的研究进展[J]. 材料导报, 2020, 34(Z1): 511-515.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed