Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 580-585    
  高分子与聚合物基复合材料 |
含酚酞侧基聚芳醚酮(PEK-C)对联苯型环氧树脂性能的影响
杨海冬1, 王德志1,2, 李洪峰1, 冯浩1, 肖万宝1,2, 赵立伟1, 曲春艳1,2
1 黑龙江省科学院石油化学研究院,哈尔滨 150080
2 黑龙江省科学院高技术研究院,哈尔滨 150040
Effect of Polyaryl Ether Ketone(PEK-C)Containing Phenolphthalein Side Base on the Performance of Biphenyl Type Epoxy Resin
YANG Haidong1, WANG Dezhi1,2, LI Hongfeng1, FENG Hao1, XIAO Wanbao1,2, ZHAO Liwei1, QU Chunyan1,2
1 Institute of Petrochemistry Heilongjiang Academy of Sciences, Harbin 150080, China
2 Institute of Advanced Technology Heilongjiang Academy of Sciences, Harbin 150040, China
下载:  全 文 ( PDF ) ( 3490KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以联苯型环氧树脂为主体树脂,PEK-C为增韧剂,4,4-二氨基二苯砜(DDS)为固化剂,采用热熔的方式制备了不同比例的共混物,并对其性能进行了表征。结果表明:PEK-C的加入可明显提高改性树脂的韧性,当PEK-C用量为15 phr时,改性树脂的冲击强度和KIC值分别为26 kJ/m2和1.57 MPa·m0.5,分别提高了73%和60%;当PEK-C用量为10 phr时,改性树脂的弯曲强度从91.6 MPa增加到112.5 MPa,弯曲模量从2.34 GPa增加到2.39 GPa;拉伸强度从91.2 MPa下降到74.6 MPa,拉伸模量从2.85 GPa增加到3.03 GPa。随着PEK-C含量的增加,改性树脂固化物5%热失重温度略有下降,但影响不大,而700 ℃残炭率较纯联苯环氧树脂有明显提高;通过 SEM对固化物断面的观察,随着PEK-C用量的增加,固化物断面由脆性破坏转为韧性破坏,当PEK-C用量为15 phr时,出现了明显的相反转结构。该改性树脂综合性能优异,在耐高温胶黏剂及预浸料基体树脂等领域具有很好的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨海冬
王德志
李洪峰
冯浩
肖万宝
赵立伟
曲春艳
关键词:  酚酞基聚芳醚酮  联苯环氧树脂  韧性破坏    
Abstract: Different proportion of PEK-C (phenolphthalein polyaryl ether ketone)/biphenyl epoxy resin blends were prepared and their properties were characterized by hot melt method using biphenyl epoxy resin as main resin, PEK-C as toughening agent and 4, 4-diaminodiphenylsulfone (DDS) as curing agent. The results showed that the addition of PEK-C can significantly improve the toughness of the modified resin. When the dosage of PEK-C is 15 phr, the impact strength and KIC value of the modified resin are 26 kJ/m2 and 1.57 MPa·m0.5, respectively, increasing by 73% and 60%. When the dosage of PEK-C was 10 phr, the bending strength of the modified resin increased from 91.6 MPa to 112.5 MPa, and the bending modulus increased from 2.34 GPa to 2.39 GPa. The tensile strength decreased from 91.2 MPa to 74.6 MPa, and the tensile modulus increased from 2.85 GPa to 3.03 GPa. With the increase of PEK-C content, the thermo-weight loss temperature of 5% of the cured modified resin decreased slightly, but the influence was not significant, while the carbon residue rate of 700 ℃ was significantly higher than that of pure biphenyl epoxy resin. Through SEM observation of the cured material section, with the increase of PEK-C dosage, the cured material section changed from brittle failure to ductile failure. When PEK-C dosage was 15 phr, an obvious reverse structure appeared. With these excellent performances, the modified resin may be applied to the fields of high temperature adhesive and prepreg.
Key words:  phenolphthalein polyaryl ether ketone    biphenyl epoxy resin    ductile failure
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  TQ323.5  
基金资助: 黑龙江省院所基本应用技术研究专项(ZNBZ2019SH01);黑龙江省自然科学基金(JC2017015)
通讯作者:  jim603@163.com   
作者简介:  杨海冬,助理研究员,硕士研究生,从事结构胶粘剂的研究与开发,参加并完成科研项目10余项。在国内外学术会议和期刊发表论文10余篇,获发明专利5项。王德志,研究员,享受国务院特殊津贴专家,黑龙江省级领军人才梯队后备带头人,黑龙江省杰出青年基金获得者。从事结构胶粘剂研究工作二十年,参加并完成完国家级、省部级科研项目22项,其中作为项目负责人申请并完成军品配套科研项目10项,承担国家级、省级在研课题各4项,成果广泛应用于航空航天领域。在国内外学术会议和期刊发表论文50余篇,获发明专利15项。
引用本文:    
杨海冬, 王德志, 李洪峰, 冯浩, 肖万宝, 赵立伟, 曲春艳. 含酚酞侧基聚芳醚酮(PEK-C)对联苯型环氧树脂性能的影响[J]. 材料导报, 2020, 34(Z2): 580-585.
YANG Haidong, WANG Dezhi, LI Hongfeng, FENG Hao, XIAO Wanbao, ZHAO Liwei, QU Chunyan. Effect of Polyaryl Ether Ketone(PEK-C)Containing Phenolphthalein Side Base on the Performance of Biphenyl Type Epoxy Resin. Materials Reports, 2020, 34(Z2): 580-585.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/580
1 袁宏. 新型酚酞聚芳醚酮的合成及性能研究. 硕士学位论文, 长春理工大学, 2012.
2 陈珂龙, 张桐, 崔溢, 等. 材料工程, 2019, 7(47), 11.
3 张凯, 黄渝鸿, 郝晓东, 等. 化学推进剂与高分子材料, 2004, 2(1),12.
4 Ren H, Sun J Z, Qian Z, et al.Polymer, 2008, 49(24), 5249.
5 Tsung H. Macromolecular Materials and Engineering, 2000, 283(1), 57.
6 Ding J P, Tao Z Q, Fan L, et al. Journal of Applied Polymer Science, 2009, 113(3), 1429.
7 孟凡宇, 于晶, 齐永新. 弹性体, 2018, 28(2), 68.
8 Mirmohseni A, Zavareh S. Materials & Design, 2010, 31(6), 2699.
9 肖艳. 化学工业, 2014, 32(9),19.
10 陈建军, 黄月文, 梁彩珍, 等. 化工进展, 2018, 37(2), 664.
11 马强, 罗静, 陈元勋, 等. 材料工程, 2016, 9(44), 109.
12 尹术帮, 杨杰, 刘新东, 等. 热固性树脂, 2013, 28(4), 46.
13 Keller A, Chong H M, Taylor A C, et al. Composites Science & Technology, 2017, 147(1),78.
14 张春玲, 那辉, 刘晨光, 等. 热固性树脂, 2002,17(1), 1.
15 Sue H J, Earls J D, Hefner Jr R E. Polymer, 1998, 39(20),4707.
16 曹伟, 高堂铃, 王冠, 等. 化学与粘合, 2016, 38(3),171.
17 Punchaipet P, Amb V, Giam M, et al. Polymer, 2001, 42, 2067.
18 Qin H H, Mather P T, Baek J B, et al. Polymer, 2006, 47(8), 2813.
19 冯青平, 杨娇萍, 刘玉, 等.复合材料学报, 2012, 29(3), 11.
20 冯浩, 曲春艳, 王德志, 等.化学与粘合, 2016, 38(6), 428.
[1] 马砺, 刘志超, 肖旸, 康付如, 杨昆, 邓军. 含无机阻燃剂硅橡胶泡沫的阻燃及热分解特性研究[J]. 材料导报, 2019, 33(11): 1836-1841.
[2] 李 款,潘友强,张 辉,陈李峰,张 健. 钢桥面铺装用环氧沥青相容性研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1534-1540.
[3] 王玉龙, 侯立杰, 刘志勇, 李世宇, 李卓辉. 水性聚氨酯改性环氧树脂乳液的涂膜性能研究[J]. 材料导报, 2019, 33(14): 2456-2460.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed