Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 555-561    
  高分子与聚合物基复合材料 |
聚酰胺6/碳纳米复合材料的研究进展
王梦柯1,2, 邱志成2, 于春晓2
1 东华大学材料科学与工程学院,上海 201620
2 中国纺织科学研究院有限公司,生物源纤维制造技术国家重点实验室,北京100025
Research Progress of Polyamide 6/Carbon Nanocomposites
WANG Mengke1,2, QIU Zhicheng2, YU Chunxiao2
1 College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
2 State Key Laboratory of Biobased Fiber Manufacturing Technology, China Textile Academy, Beijing 100025,China
下载:  全 文 ( PDF ) ( 5512KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚酰胺6(PA6)是一种综合性能优异的热塑性工程塑料,分子链末端存在氨基和羧基,具有一定的反应活性,应用广泛。近年来,随着纳米技术的快速发展,通过填充功能性纳米材料来改善PA6基体的导电、导热功能和力学、结晶及流变等性能,从而拓宽PA6材料的应用领域逐渐成为材料领域研究的热点,聚酰胺基纳米复合材料也被认为是未来应用前景最佳的复合材料之一。纳米材料是当今新材料研究领域中的重要组成部分,其中碳纳米材料尤为突出。自Iijima于1991年发现碳纳米管以来,碳纳米材料一直是研究人员重点关注的方向。碳纳米材料独特的结构和尺寸赋予了其超高的力学性能、电学性能以及热学、光学、流变、吸附等多种优异的性能,是复合材料体系中理想的增强材料。但碳纳米材料粒径较小、比表面积大、表面能大,在范德华力的作用下,碳纳米材料在基体中容易形成尺寸较大的团聚体,从而导致复合材料的性能下降。为了提高碳纳米材料在PA6基体中的分散性以及增强其与基体的界面结合,必须对碳纳米材料进行适当的表面改性以降低表面能。目前比较常用的改性方法有机械法、化学接枝法、超声分散改性、表面活性剂法等。   本文系统论述了近年来在PA6/碳纳米复合材料方面的研究进展,特别是以炭黑、碳纳米管、石墨烯为代表的PA6/碳纳米复合材料的制备方法,并评述了碳纳米材料的表面修饰和添加量对复合材料性能与功能的影响。最后,针对高导电、高导热功能的PA6/碳纳米复合材料实现大规模、低成本的工业化制备存在的问题提出展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王梦柯
邱志成
于春晓
关键词:  聚酰胺6  炭黑  碳纳米管  石墨烯    
Abstract: Polyamide 6 (PA6) is an important thermoplastic engineering plastic has been vastly used due to its attractive and excellent comprehensive properties. PA6 macromolecular chain contains carboxyl or amino end groups and has a certain reactivity under a certain strip, and is easily modified. In recent years, with the rapid growth in nanoscience research and its applications, functional nanomaterials are synthesized and applied, to improve the electrical conductivity, thermal conductivity and mechanics, crystallization and rheology of PA6 composites, leading to their wider applications in various fields. Therefore, polyamide-based nanocomposites have become a greatly active field in studies and applications of composite materials. Nanomaterials, especially carbon nanomaterials, are such an important part of today's materials science. Since Iijima discovered carbon nanotubes in 1991, various carbon nanomaterials have attracted increasing attention in the past decades. Carbon nanomaterials, with geometric structure and particle size, are ideal structural reinforcing materials for composites owing to their extraordinary properties, such as excellent mechanical, electrical, thermal, optical, rheological, adsorption, etc. However, carbon nanomaterials have the characteristics of small particle size, large specific surface area and high surface energy. Under van der Waals force, carbon nanomaterials tend to form large aggregates in the polymeric matrix, which leads to the degradation of the composite properties. In order to improve the dispersion of carbon nanomaterials in PA6 matrix and increase their interfacial bonding, appropriate surface modification of carbon nanomaterials must be carried out to reduce the surface energy. At present, the commonly used modification methods include mechanical method, chemical grafting method, ultrasonic dispersion modification and surfactant method, and so on. The recent research progress of PA6/carbon nanocomposites, especially the preparation methods of PA6/carbon nanocomposites represented by carbon black, carbon nanotubes, and graphene, are systematically reviewed, the effects of surface modification and addition amount of carbon nanocomposites on the properties and functions of composites are reviewed. Finally, the problems of large-scale and low-cost industrial pre-paration of PA6/carbon nanocomposites with high electrical conductivity and high thermal conductivity based on achievements are proposed.
Key words:  polyamide 6    carbon black    carbon nanotube    graphene
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  TQ323.6  
基金资助: 国家重点研发计划项目(2016YFB0302800)
通讯作者:  gcqzchn@163.com   
作者简介:  王梦柯,2019年6月毕业于河南理工大学,获得工学学士学位。现为东华大学和中国纺织科学研究院联合培养硕士研究生,在邱志成博士的指导下进行研究。目前主要研究领域为成纤聚酰胺复合材料的原位合成及结构性能。邱志成,博士,中国纺织科学研究院有限公司高级工程师,2011年获四川大学高分子化学与物理专业博士学位。主要从事成纤聚合物的合成与改性研究和聚酯纤维工程化技术开发。共发表学术论文22篇,其中SCI收录12篇、EI收录3篇;申请中国发明专利47项、PCT专利2项,获得中国发明专利授权22项、国外发明专利授权2项。先后获得中国纺织工业联合会科技进步一等奖1项、中国专利优秀奖1项,入选中国科协“青年人才托举工程”。
引用本文:    
王梦柯, 邱志成, 于春晓. 聚酰胺6/碳纳米复合材料的研究进展[J]. 材料导报, 2020, 34(Z2): 555-561.
WANG Mengke, QIU Zhicheng, YU Chunxiao. Research Progress of Polyamide 6/Carbon Nanocomposites. Materials Reports, 2020, 34(Z2): 555-561.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/555
1 巫晓鑫. 尼龙6和高密度聚乙烯的耐热改性及性能研究. 硕士学位论文,华南理工大学, 2013.
2 徐亮. 阻燃抗静电PA6的研究. 硕士学位论文,浙江工业大学, 2010.
3 黄秀, 刘倩, 江桂斌.分析科学学报, 2019, 35(6), 701.
4 Zhang X, Fan X, Li H, et al. Journal of Materials Chemistry, 2012, 22(45), 24081.
5 Yu J, Gröbner G, Tonpheng B, et al.Elsevier Ltd, 2011, 52(24), 5521.
6 Liu T, Phang I Y, Shen L,et al. Macromolecules, 2007, 40(24), 8812.
7 于思聪. 聚酰胺6/碳纳米管复合材料的制备及性能研究. 硕士学位论文,天津工业大学, 2017.
8 汪灵骥, 尹波, 杨鸣波,等. 塑料工业, 2018, 46(4), 59.
9 Hwang S H, Kin B J, Beak J B, et al. Composites Part B-Engineering, 2016, 100, 220.
10 林丽隽. 水性炭黑色浆的制备及性能研究. 硕士学位论文,华南理工大学, 2012.
11 胡娟. 炭黑填充尼龙6导电复合材料的制备及性能研究. 硕士学位论文,北京化工大学, 2013.
12 宋云华, 范闯, 王成忠,等.中国塑料, 2010, 24(2), 21.
13 廖恩华. 原位聚合法聚酰胺6/改性炭黑纳米复合材料的制备及其性能研究. 硕士学位论文,江西师范大学, 2012.
14 Liu Y, Xu W, Zhu J, et al. Journal of Macromolecular Science Part B-Physics, 2015, 54(4), 469.
15 Cheng H K F, Sahoo N G, Li L, et al. In: Proceedings of The 36th International Matador Conference. Univ Manchester, Manchester, United Kingdom, 2010, pp. 9.
16 邓凌云. 托辊用耐磨尼龙6复合材料的研制. 硕士学位论文,湖南大学,2013.
17 Basavaraj E, Ramaraj B, Lee J H, et al. Materials Chemistry and Phy-sics, 2013, 138(2-3), 658.
18 Koysuren O, Yesil S, Bayram G.Journal of Applied Polymer Science, 2006, 102(3), 2520.
19 赵欢, 曾雨晴, 李聪慧,等.东华大学学报(自然科学版), 2011, 37(6), 667.
20 史青. 功能尼龙6复合材料的制备及性能表征. 硕士学位论文,扬州大学, 2019.
21 Monteiro A O, Cachim P B, Costa P M F J. Diamond and Related Materials, 2014, 44, 11.
22 Meincke O, Kaempfer D, Weickmann H, et al.Polymer, 2003, 45(3), 739.
23 Ma P C, Siddiqui N A, Marom G, et al.Composites Part A-Applied Science and Manufacturing, 2010, 41(10), 1345.
24 陈甜. 多壁碳纳米管增强聚酰胺6与聚酰胺66纤维的制备及性能. 硕士学位论文,天津工业大学, 2018.
25 Ferreira T, Paiva M C, Pontes A J.Journal of Polymer Research, 2013, 20(11), 301.
26 谭丽容,颜婧,茹兰,等.塑料工业, 2011, 39(10), 112.
27 Phang I Y, Ma J H, Shen L, et al. Polymer International, 2006, 55(1), 71.
28 Naffakh M, Marco C, Gomez M A, et al.Journal of Nanoscience and Nanotechnology, 2009, 9(10), 6120.
29 刘海军. 超支化聚酰胺改性碳纳米管的制备及其对PA6性能的影响. 硕士学位论文,天津科技大学, 2015.
30 李娟. 碳纳米管/尼龙6复合材料的结构与性能研究. 硕士学位论文,浙江大学, 2006.
32 Ebbesen T W, Lezec H J, Hiura H, et al.Nature, 1996, 382(6586), 54.
33 郭宝华, 范劲松, 李金美,等.工程塑料应用, 2008(7), 5.
34 李中原, 孙红玲, 刘文涛,等.中国塑料, 2011, 25(9), 29.
35 Yu J C, Tonpheng B, Gröbner G, et al.Elsevier Ltd, 2011, 49(14), 4858.
36 Zhang Z, Cao M, Chen P, et al.Materials & Design, 2019, 177, 107835.
37 王亮, 吴唯, 邹志强,等.高分子材料科学与工程, 2019, 35(3), 42.
38 朱帅甫, 吴海宏, 张显果,等.塑料科技, 2015, 43(8), 28.
39 Sun X, Liu Z, Welsher K, et al.Nano Research, 2008, 1, 203.
40 Dixon D, Lemonine P, Hamilton J, et al.Journal of Thermoplastic Composite Materials,2015, 28(3), 372.
41 Nguyen L, Choi S M, Kim D H, et al. Macromolecular Research,2014, 22(3), 257.
42 陈美龙, 欧宝立, 郭源君,等.材料科学与工艺, 2019, 27(1), 24.
43 Zhang P P, Zhu K Y, Su L Q, et al.Advanced Materials Research, 2013, 621,31.
44 季翔. 氧化石墨烯的表面改性及其对聚酰胺6纤维的增强作用. 硕士学位论文,浙江理工大学, 2019.
45 谢翔. GO改性MCA/高流动性PA6阻燃复合材料的制备、结构及性能. 硕士学位论文,湖南工业大学, 2014.
46 Scaffaro R, Maio A.Composites Part B-Engineering, 2019, 165, 55.
47 文健. 氧化石墨烯/尼龙6复合材料结晶动力学及增韧改性研究. 硕士学位论文,华南理工大学, 2019.
48 Zhang Y, Tan J W, Stormer H L, et al.Nature, 2005, 438, 201.
49 郑丹. 氧化石墨烯/聚酰胺6纳米复合材料的制备和导电性研究. 硕士学位论文,北京化工大学, 2011.
50 Du N, Zhao C, Chen Q, et al. Materials Chemistry and Physics, 2010, 120(1),167.
51 Balandin A A, Ghosh S, Bao W, et al.Nano Letters, 2008,8(1), 902.
52 李顼珩. 三维石墨烯对聚酰胺6复合材料导热与阻燃性能的影响研究. 硕士学位论文,上海大学, 2017.
53 Ding P, Su S, Song N,et al. Carbon, 2014, 66, 576.
[1] 吴学志, 尹邦跃. 原位合成法制备UO2-石墨烯复合燃料机理与性能研究[J]. 材料导报, 2020, 34(Z2): 6-10.
[2] 王效军, 刘太奇. 碳纳米颗粒对碳纳米管复合材料电热-力学性能的影响[J]. 材料导报, 2020, 34(Z2): 63-66.
[3] 侯若梦, 贾瑛, 黄远征, 沈可可. 石墨烯复合材料在空气净化中的应用研究进展[J]. 材料导报, 2020, 34(Z2): 104-111.
[4] 于镇洋, 吕本元, 何威. 冷轧对原位生长三维石墨烯/铜基复合材料性能的影响[J]. 材料导报, 2020, 34(Z2): 390-394.
[5] 他进国, 黄一凡, 甄小娟. 500 keV质子辐照对氧化石墨烯薄膜材料的影响研究[J]. 材料导报, 2020, 34(Z1): 39-42.
[6] 莫若飞, 杨玉婷, 潘可, 赵立春. 石墨烯及其衍生物在中医药领域中的应用研究进展[J]. 材料导报, 2020, 34(Z1): 58-62.
[7] 王永红, 杨倩倩, 刘辰, 刘会斌, 林晨, 肖鹏飞, 巩凌峰. 非金属超疏水纳米涂层技术的研究进展[J]. 材料导报, 2020, 34(Z1): 66-71.
[8] 张莉. 碳纳米管的吸附性能及对水中污染物的吸附:综述[J]. 材料导报, 2020, 34(Z1): 72-77.
[9] 黄江锋, 刘鸿, 刘启斌, 韦康, 白家峰, 王弘, 黄宇亮, 韦祎, 兰柳妮, 冯守爱. 石墨烯-纳米SiO2气凝胶对巴豆醛的吸附性研究[J]. 材料导报, 2020, 34(Z1): 82-85.
[10] 吴学志, 尹邦跃, 郑新海. 碳纳米管增强UO2燃料力学性能研究[J]. 材料导报, 2020, 34(Z1): 153-156.
[11] 戴文亭, 郝如意, 李颖松, 常孟元, 郭威. 疏水性纳米白炭黑沥青混合料的蠕变参数对动稳定度的敏感性分析[J]. 材料导报, 2020, 34(Z1): 237-240.
[12] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[13] 方敏, 王璐, 侯佳欣, 南晓茹, 赵彬. 丝素蛋白复合石墨烯类材料在生物医学领域中的研究进展[J]. 材料导报, 2020, 34(Z1): 511-515.
[14] 魏俊富, 张天烨, 辛卓含, 王智航, 张丽. 水体中芳香类有机化合物吸附材料的研究进展[J]. 材料导报, 2020, 34(Z1): 527-530.
[15] 仪登豪, 冯英豪, 张锦芳, 李晓峰, 刘斌, 梁敏洁, 白培康. 3D打印石墨烯增强复合材料研究进展[J]. 材料导报, 2020, 34(9): 9086-9094.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed