Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 549-554    
  高分子与聚合物基复合材料 |
剪切增稠纤维复合材料的研究进展
林欢1,2, 李万利2, 蔡利海2, 刘文言1
1 中国矿业大学机电与信息工程学院,北京 100083
2 军事科学院系统工程研究院军事新能源技术研究所,北京 102300
Research Progress in Shear Thickening Fabric Composite Materials
LIN Huan1,2, LI Wanli2, CAI Lihai2, LIU Wenyan1
1 School of Mechanical Electronic & Information Engineering, China University of Mining & Technology, Beijing 100083, China
2 Institute of Military New Energy Technology, Institute of Systems Engineering, Academy of Military Sciences, Beijing 102300, China
下载:  全 文 ( PDF ) ( 3935KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 现代战争对人体防护的要求正在逐渐提高,传统防护材料已经无法满足防护需求,轻质柔软的防护材料逐渐成为研究热点。剪切增稠是剪切增稠流体(Shear thickening fluid,STF)和剪切增稠凝胶(Shear thickening gel,STG)中常见的物理现象,其粘度随着剪切速率的增加而明显增加。自STF/纤维复合材料应用于防弹防刺领域以来,其剪切增稠特性和制备工艺得到优化,整体防弹性能得到了提升。但是STF和纤维的界面结合能力较低,导致整体稳定性差,严重阻碍了其发展。相比STF/纤维复合材料,STG/纤维复合材料具有稳定性高的优点。在压缩、剪切、拉伸等外力作用下,STG中大量硼氧动态键断裂吸收能量和长链分子之间相互缠结,使其由粘性状态转变为弹性状态,提升防护性能。本文从STF和STG两个方面分别对剪切增稠纤维复合材料的研究进展进行了总结,并探讨了剪切增稠纤维复合材料的耗能机理,最后对剪切增稠纤维复合材料面临的科学和实际应用问题以及今后的发展趋势进行了总结与展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林欢
李万利
蔡利海
刘文言
关键词:  剪切增稠流体(STF)  剪切增稠凝胶(STG)  复合材料  防弹性能    
Abstract: With the increasing requirements for the protection of human body in modern warfare, traditional protective materials cannot meet the protective needs, and the light and soft protective materials have gradually become a research hotspot. Shear thickening is a common physical phenomenon in shear thickening fluids (STF) and shear thickening gels (STG), and its viscosity increases significantly with the increase of shear rate. Since STF/fiber composite materialswere used in bullet and stab proof field, the characteristics of shear thickening and preparation process have been optimized, and the overall ballistic performance has been improved. But the weak interface between STF and fiber leads to poor overall stability, which seriously hinders its development. Compared with STF/fiber composite materials, STG/fiber composite materials have the advantage of high stability. Under the external forces, such as compression, shearing and stretching, a large number of boron-oxygen dynamic bonds in STG are broken to absorb energy, and the long-chain molecules are entangled with each other, turning the viscous state into an elastic state, improving the protection performance. This article summarizes the research progress of shear thickening fiber composites from the two aspects of STF and STG, and discusses the mechanism of energy consumption for shear thickening fiber composites. Finally, the issues of science and practical applications for shear thickening fiber composites and their future development trends are summarized and prospected.
Key words:  shear thickening fluid(STF)    shear thickening gel(STG)    composite materials    ballistic performance
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  TB332  
通讯作者:  13520351817@139.com   
作者简介:  林欢,2017年6月毕业于延边大学,获得理学学士学位。现为中国矿业大学(北京)和军事科学院系统工程研究院军事新能源技术研究所联合培养硕士研究生,在李万利高工的指导下进行研究。目前主要研究领域为防护材料。李万利,本硕毕业于厦门大学,博士毕业于中国科学院化学研究所,高分子材料专业。现为军事科学院系统工程研究院军事新能源技术研究所高级工程师。目前主要从事军事能源装备材料与安全防护技术方面的研究工作。近年来,发表论文30多篇,授权国家发明专利10多项。
引用本文:    
林欢, 李万利, 蔡利海, 刘文言. 剪切增稠纤维复合材料的研究进展[J]. 材料导报, 2020, 34(Z2): 549-554.
LIN Huan, LI Wanli, CAI Lihai, LIU Wenyan. Research Progress in Shear Thickening Fabric Composite Materials. Materials Reports, 2020, 34(Z2): 549-554.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/549
1 Lee Y S, Wetzel E D, Wagner N J.Journal of Materials Science, 2003, 38(13), 2825.
2 Wetzel E D, Lee Y S, Egres R G, et al.American Institute of Physics, 2004, 712(1), 288.
3 Gürgen S, Kühan M C.Polymer Testing, 2017, 64, 296.
4 Khodadadi A, Liaghat G, Vahid S, et al.Composites Part B, Enginee-ring, 2019, 162, 643.
5 Roy M R, Leathen W E. U.S.patent,EP2431878,1947.
6 宋镇宇, 宋梦, 吴丝竹. 2011年全国高分子学术论文报告会,大连理工大学,2011,pp. 1036.
7 夏艳丽. 基于剪切增稠胶的柔性防护复合材料的制备及低速抗冲击性能研究.硕士学位论文,江南大学,2018.
8 Zhao C, Xu C, Cao S, et al.Smart Materials and Structures, 2019, 28(7), 075036.
9 Zhao C, Wang Y, Cao S, et al.Composites Science and Technology, 2019, 182, 107782.
10 He Q, Cao S, Wang Y, et al.Composites Part A: Applied Science and Manufacturing, 2018, 106, 82.
11 Zhang S, Wang S, Wang Y, et al.Composites Part A: Applied Science and Manufacturing, 2018, 112, 197.
12 Wei M, Lin K, Guo Q, et al. Measurement and Control, 2019, 52(1-2), 72.
13 Hogg P J. Science, 2006, 314(5802), 1100.
14 Tian T, Li W, Ding J, et al. AIP Conference Proceedings, 2013, 1542(1), 133.
15 Lin K, Liu H, Wei M, et al. Smart Materials and Structures, 2019, 28(2), 025007.
16 Zhang X Z, Li W H, Gong X L. Smart Materials and Structures, 2008, 17(3), 035027.
17 Guo Y, Wei Y, Zou J, et al. Smart Materials and Structures, 2019, 28(9), 095005.
18 Liu K, Cheng C-F, Zhou L, et al. Journal of Power Sources, 2019, 423, 297.
19 Bergström L. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 133(1-2), 151.
20 Crawford N C, Popp L B, Johns K E, et al. Journal of Colloid and Interface Science, 2013, 396, 83.
21 Fall A, Huang N, Bertrand F, et al. Physical Review Letters, 2018, 100(1), 018301.
22 Egres R G, Wagner N J. Journal of Rheology, 2005, 49(3), 719.
23 Jiang W, Sun Y, Xu Y, et al. Rheologica Acta, 2010, 49(11-12), 1157.
24 Qin J, Zhang G, Shi X.Journal of Dispersion Science and Technology, 2016, 38(7), 935.
25 秦建彬.剪切增稠液及其复合材料的制备与性能研究.博士学位论文,西北工业大学,2017.
26 Chen Q, Zhu W, Ye F, et al.Materials Research Express, 2014, 1(1), 015303.
27 Hassan T A, Rangari V K, Jeelani S.Materials Science and Engineering A,2010,527(12), 2892.
28 Qin J, Zhang G, Shi X. Journal of Dispersion Science and Technology, 2015, 37(11), 1599.
29 Yeh S K, Lin J J, Zhuang H Y, et al. Journal of Polymer Research, 2019, 26(6), 155.
30 Maranzano B J, Wagner N J. The Journal of Chemical Physics, 2001, 114(23), 10514.
31 王谚. 剪切增稠液体及其纤维复合材料的制备与性能研究.硕士学位论文,北京理工大学, 2015.
32 Majumdar A, Butola B S, Srivastava A J M, et al.Materials & Design, 2013, 51, 148.
33 Nakonieczna P, Wierzbicki Ł, Wróblewski R, et al. Bulletin of Materials Science, 2019, 42(4), 162.
34 Laha A, Majumdar A. Applied Clay Science, 2016, 132-133, 468.
35 柳旭. STF-Kevlar织物抗高速冲击机理与影响因素研究.硕士学位论文,南京航空航天大学,2018.
36 Ávila A F, de Oliveira A M, Leão S G, et al. Composites Part A, Applied Science and Manufacturing, 2018, 112, 468.
37 Tan Z, Li W, Huang W. Smart Materials and Structures, 2018, 27(7), 075048.
38 Mahfuz H, Clements F, Rangari V, et al. Journal of Applied Physics, 2009, 105(6), 064307.
39 Srivastava A, Majumdar A, Butola B S J M S, et al. Materials Science and Engineering A, 2011, 529, 224.
40 Arora S, Majumdar A, Butola B S. Composite Structures, 2019, 210, 41.
41 Park J L, Yoon B I, Paik J G, et al. Textile Research Journal, 2012, 82(6), 542.
42 Majumdar A, Laha A, Bhattacharjee D, et al. The Journal of the Textile Institute, 2019, 110(10), 1515.
43 王天坤, 俞科静, 钱坤,等.化工新型材料, 2016, 44(8), 108.
44 Park J L, Yoon B I, Paik J G, et al. Textile Research Journal, 2011, 82(6), 527.
45 翁浦莹. STF-Kevlar、UHMWPE织物复合形式及其防弹性能研究.硕士学位论文,浙江理工大学,2015.
46 Chen X, Zhou Y, Wells G. Composites Part B, Engineering, 2014, 58, 35.
47 Min S, Chu Y, Chen X. Materials & Design, 2016, 90, 896.
48 孙西超, 李艳清, 伍仲,等. 浙江理工大学学报,2014,31(3), 127.
49 Kang T J, Kim C Y, Hong K H. Journal of Applied Polymer Science,2012,124(2),1534.
50 Fu K, Wang H, Zhang Y X, et al. International Journal of Impact Engineering, 2020, 139,103525.
51 Wagner N J, Brady J F. Physics Today, 2009, 62(10), 27.
52 Hoffman R L. Transactions of the Society of Rheology, 1972, 16(1),155.
53 Hoffman R L. Journal of Colloid and Interface Science, 1974, 46(3),491.
54 Kordani N, Vanini A S, Amiri H. Polymers and Polymer Composites, 2016, 24(4), 281.
55 Mirrahimi A H, Hasanzadeh M, Mottaghitalab V, et al. Procedia Engineering, 2017, 173, 73.
56 Sanchi Arora A M, Bhupendra Singh Butola. Composite Structures, 2020, 233, 111720.
57 Golinelli N, Spaggiari A, Dragoni E. Journal of Intelligent Material Systems and Structures, 2015, 28(8), 953.
58 Osuji C O, Weitz D A, Co A, et al. AIP Conference Proceedings. American Institute of Physics, 2008, pp.680.
59 Wang Y, Wang S, Xu C, et al. Composites Science and Technology, 2016, 127, 169.
60 Zhang S, Wang S, Wang Y, et al. Composites Part A: Applied Science and Manufacturing, 2018, 112, 197.
61 Wang S, Jiang W, Jiang W, et al. Journal of Materials Chemistry C, 2014, 2(34), 7133.
62 Jiang W, Gong X, Wang S, et al. Applied Physics Letters, 2014, 104(12), 121915.
63 Wang Y, Gong X, Xuan S. Smart Materials and Structures, 2018, 27(6), 065008.
[1] 申欣, 孟昭旭, 廉鹤. 纳米羟基磷灰石复合材料在癌症治疗中的应用进展[J]. 材料导报, 2020, 34(Z2): 88-90.
[2] 侯若梦, 贾瑛, 黄远征, 沈可可. 石墨烯复合材料在空气净化中的应用研究进展[J]. 材料导报, 2020, 34(Z2): 104-111.
[3] 贺龙朝, 荆磊, 余森, 徐云浩, 于振涛. 医用可降解镁基复合材料的研究现状及趋势[J]. 材料导报, 2020, 34(Z2): 323-326.
[4] 赵惠. 成型工艺对钨基复合材料界面组织和性能的影响[J]. 材料导报, 2020, 34(Z2): 351-355.
[5] 臧恒波, 乔菁. 无压浸渗工艺对Al2O3/Al-Mg-Si复合材料微观组织和力学性能的影响[J]. 材料导报, 2020, 34(Z2): 371-375.
[6] 于镇洋, 吕本元, 何威. 冷轧对原位生长三维石墨烯/铜基复合材料性能的影响[J]. 材料导报, 2020, 34(Z2): 390-394.
[7] 郝新超, 薛斌. 复合材料疲劳强度分布与疲劳验证载荷放大系数[J]. 材料导报, 2020, 34(Z2): 447-452.
[8] 王鑫, 张志彬, 胡振峰. 沸石分子筛在金属腐蚀防护领域的应用前景[J]. 材料导报, 2020, 34(Z2): 453-456.
[9] 车会凌, 赵元轶, 冉雄雄, 董皓月, 匡颖, 高姗姗. 不同形貌的纳米二氧化硅制备方法及其对高分子复合材料力学性能的影响综述[J]. 材料导报, 2020, 34(Z2): 484-489.
[10] 宋寒, 徐春晓, 王湘宁, 刘韬, 苏力军, 孙阔, 郭慧, 李文静. 不同树脂前驱体配比对无机酚醛气凝胶隔热复合材料性能的影响研究[J]. 材料导报, 2020, 34(Z2): 525-527.
[11] 李范, 张杨, 朱利民. 复合材料钻孔缺陷超声检测技术研究进展[J]. 材料导报, 2020, 34(Z2): 528-533.
[12] 刘克健, 高玉龙. 一种快速固化的环氧树脂基预浸料及其性能[J]. 材料导报, 2020, 34(Z2): 576-579.
[13] 魏凤春, 李明哲, 张晓, 关春龙. 碳纤维增强砂轮基体的有限元模态分析研究[J]. 材料导报, 2020, 34(Z2): 590-593.
[14] 李姗姗, 张雷, 王京红, 罗欣. 2.5维机织复合材料经纬向力学性能实验研究[J]. 材料导报, 2020, 34(Z2): 603-606.
[15] 杨松, 盛双华, 刘应开. 基于Au修饰的花状V2O5的表面增强拉曼散射研究[J]. 材料导报, 2020, 34(Z1): 34-38.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed