Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 539-542    
  高分子与聚合物基复合材料 |
2,2′-联吡啶对化学铜二元络合剂体系沉积过程的影响
卢建红1,2, 邓小梅3, 阎建辉3, 涂继国1, 王明涌1, 焦树强1
1 北京科技大学钢铁冶金新技术国家重点实验室,北京100083
2 北京化工大学常州先进材料研究院,常州 213164
3 湖南理工学院化学化工学院,岳阳 414006
Deposition Effect of 2,2′-dipyridyl in Dual-ligands Electroless Copper System
LU Jianhong1,2, DENG Xiaomei3, YAN Jianhui3, TU Jiguo1, WANG Mingyong1, JIAO Shuqiang1
1 State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
2 Changzhou Institutes of Advanced Materials, Beijing University of Chemical Technology, Changzhou 213164, China
3 School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
下载:  全 文 ( PDF ) ( 5414KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 二元络合剂化学镀铜体系相较于一元络合体系,因增大了对沉积反应的调控空间而备受关注,稳定剂是二元体系的重要组分之一,当前关于稳定剂在二元络合体系中的作用规律系统性研究较少。本研究以2,2′-联吡啶为乙二胺四乙酸(EDTA)/四羟丙基乙二胺(THPED)化学镀铜二元络合体系为稳定剂,测试了体系的电化学特征和镀层结构的变化规律。基于活性离子的吸附差异,化学镀铜的二元络合体系混合电位分为诱导、过渡和稳定三个反应过程, 发现2,2′-联吡啶使体系的混合电位值负向移动的趋势放缓。线性伏安法扫描数据表明,由于2,2′-联吡啶在反应电极表面的吸附,减缓了铜络离子的阴极还原反应, 还原峰电流密度下降了34.3%,沉积反应受阴极还原步骤控制;镀层的沉积速率随2,2′-联吡啶浓度增加显著下降,同时由于强络合作用抑制了Cu+氧化,起到了稳定镀液的作用。通过SEM、EDS和XRD揭示,加入了2,2′-联吡啶后二元体系所制备的化学镀层呈均匀致密的菱形颗粒状,晶界面清晰分明,具有较高的纯度,以及明显的(220)晶面择优取向趋势,这与2,2′-联吡啶定向吸附在(111)、(200)生成方向抑制这二类晶面的生长,而在(220)生长方向吸附微弱从而抑制较少有关。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卢建红
邓小梅
阎建辉
涂继国
王明涌
焦树强
关键词:  2,2′-联吡啶  化学镀铜  混合电位  晶面择优取向  定向吸附    
Abstract: Compared with the single-ligand electroless copper system, the dual-ligands system was concerned about recently because it could increase the regulatory space for deposit reaction. 2,2′-dipyridyl as a stabilizer was used for electroless copper plating in EDTA/THPED dual-ligands system. The electrochemical behavior and surface structure of copper layer were studied systematically. Mixed potential tests indicated that the overall process was divided into three districts that called as induction, transitional and stable region, 2,2′-dipyridyl made fall-off trend of electrode potential to slowdown. 2,2′-dipyridyl could retard cathodic polarization by linear sweep voltammetry test, the peak value of cathodic current density decreased 34.3%, which reduced obviously Cu deposition rate due to cathodic reaction was control step. Meanwhile, the decomposition time of electroless solution sharply increased and the reoxidation of Cu(I) ion was effectively inhibited in the presence of 2,2′-dipyridyl. Metallographic studies of copper layers with 2,2′-dipyridyl revealed that surface structures and fine particle distribution were uniform. The resultant product was high-purity without detectable metal oxide. Moreover, copper layers displayed that addition of 2,2′-dipyridyl favored the formation of the preferred orientation on the (220) lattice plane by X-ray diffraction, which was related to the directional adsorption of the stabilizer, i.e. preferential adsorption on the (111) and (200) crystal planes. There was no significant change in grain size with the addition of 2,2′-dipyridyl.
Key words:  2,2′-dipyridyl    electroless copper    mixed potential    preferred orientation    directional adsorption
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  TQ153.1  
基金资助: 常州市科技计划(CJ20180014)
通讯作者:  sjiao@ustb.edu.cn   
作者简介:  卢建红,1972年生,博士,研究员,研究方向为电化学冶金和功能材料。焦树强,1977年生,教授,博士研究生导师,研究方向为电化学冶金、高温过程反应机理及动力学。
引用本文:    
卢建红, 邓小梅, 阎建辉, 涂继国, 王明涌, 焦树强. 2,2′-联吡啶对化学铜二元络合剂体系沉积过程的影响[J]. 材料导报, 2020, 34(Z2): 539-542.
LU Jianhong, DENG Xiaomei, YAN Jianhui, TU Jiguo, WANG Mingyong, JIAO Shuqiang. Deposition Effect of 2,2′-dipyridyl in Dual-ligands Electroless Copper System. Materials Reports, 2020, 34(Z2): 539-542.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/539
1 Li D P, Goodwin K, Yang C L.The Journal of Materials Science, 2008, 43, 7121.
2 Pawar P, Anasane S, Ballav R, et al.Journal of Production Engineering, 2016, 19(2), 27.
3 Wang Y, Ni L J, Yang F, et al.Journal of Materials Chemistry C, 2017, 48,12769.
4 Diamand Y S, Osaka T, Okinaka Y, et al.Microelectronic Engineering, 2015, 132, 35.
5 卢建红, 焦汉东, 焦树强. 电镀与涂饰, 2016, 35(13), 705.
6 Huang J J, Tian C G, Wang J, et al.Applied Surface Science, 2018, 458,734.
7 卢建红, 焦汉东, 焦树强.工程科学学报, 2017, 39(9),1380.
8 Gan X P, Zhou K C, Hu W B, et al.Surface Coating Technology, 2012, 206, 3405.
9 BalaRamesh P, Rekha S, Venkatesh P, et al.Chemical Science Transactions, 2014, 3(3), 1214.
10 Shingubara S, Wang Z L, Yaegashi O, et al.Electrochemical and Solid State Letters, 2004, 6,78.
11 Okinaka Y, Straschil H K.Journal of the Electrochemical Society, 1986, 133(12), 2608.
12 Bae Y H, Lee J H.Nanoscience and Nanotechnology Letters, 2017, 9(8),1227.
13 Chen W S, Luo G Q, Li M J, et al.Applied Surface Science, 2014, 301,85.
14 Lin Y M, Yen S C.Applied Surface Science, 2001, 178, 116.
15 Xiang S S, Li W P, Qian Z Y, et al.RSC Advances, 2016, 45, 38647.
16 杨斌, 杨防祖, 黄令, 等.电化学, 2007, 13(4), 425.
17 Perminder B, Judith T.Journal of the Electrochemical Society, 1983, 130(5), 1112.
18 Tobias B, Sebastian Z, Frank B, et al.International Symposium on Microelectronics, 2015, 1, 99.
19 Lu J H, Yun J, Lei H P, et al.International Journal of Electrochemical Science, 2018, 13, 6015.
20 Lu,J H, Wang M Y, Deng X M, et al.Electrochemistry, 2019, 87(2), 214.
21 卢建红, 邓小梅, 阎建辉, 等.材料研究, 2019, 33(9), 666.
22 谷新, 胡光辉, 王周成, 等.物理化学学报, 2004, 20 (2), 113.
23 Perminder B, Judith RJournal of Applied Electrochemistry, 1987, 17, 1254.
24 Fumihiro I, Harold P, Alex R, et al.Journal of the Electrochemical Society, 2012,159 (7),437.
25 Datu E M, Balela M D L.Key Engineering Materials, 2016, 705,163.
26 Lee C H, Lee S C,Kim J J.Electrochem Acta, 2005, 50,3563.
27 Norkus E.Journal of Applied Electrochemistry, 2000, 30, 1163.
28 Ramasubramanian M, Popov B N, White R E, et al.Journal of the Electrochemical Society, 1999, 146 (1), 111.
29 余尚银, 秦效慈.西安交通大学学报, 1995(1),34.
30 林邦A 著, 戴明译.分析化学中的络合作用,高等教育出版社, 1987.
31 Hu F T, Yang S, Wang H Z, et al.Journal of Electronic Materials, 2015, 44(11), 4516.
32 Nadana S, Shanmugam C, Natesan K, et al.Journal of Nanomaterials, 2013,5251, 1.
33 Andrew K, Kercher, Dennis C, et al.Carbon, 2003, 41(1),15.
[1] 赵可一, 曾和平. 镀铜空心玻璃微珠的光催化降解性能[J]. 材料导报, 2020, 34(Z2): 132-137.
[2] 周娩红,陈石林,杨建校,郭建光. 镀铜CF/ABS树脂复合材料的导电性能[J]. 《材料导报》期刊社, 2018, 32(10): 1592-1596.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed