Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 356-359    
  金属与金属基复合材料 |
轧制ATZ331合金的显微组织与力学性能
王力1,2, 裴迪2, 李新林2, 裴志洋3
1 银川能源学院化学与生物工程学院, 银川750105
2 哈尔滨工程大学材料科学与化学工程学院,哈尔滨 150001
3 辽宁石油化工大学石油化工学院,抚顺 113001
Effect of Rolling on Microstructure and Mechanical Properties of ATZ331 Alloy
WANG Li1,2, PEI Di2, LI Xinlin2, PEI Zhiyang3
1 School of Chemical and Biology Engineering, Yinchuan University of Energy, Yinchuan 750105, China
2 School of Materials Science and Chemical Engineering,Harbin Engineering University, Harbin 150001, China
3 School of Petrochemical Engineering, Liaoning University of Petrochemical Engineering, Fushun 113001, China
下载:  全 文 ( PDF ) ( 7904KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镁合金由于密度低、比强度高、阻尼减振性好和电磁屏蔽性能良好而受到广泛关注。然而,由于镁合金室温塑性变形能力较差,极大地限制了镁合金的工业应用。本工作采用传统铸造方法获得ATZ331合金,并分别采用单向轧制和交叉轧制方式对ATZ331合金进行塑性变形,采用金相显微镜、扫描电子显微镜(SEM)、X射线衍射仪(XRD)和万能材料试验机等研究了轧制方式对ATZ331镁合金显微组织演变及力学性能的影响规律。结果表明:ATZ331合金经过固溶处理后,基体α-Mg的晶界及晶内存在细小而弥散分布的Mg2Sn和MgZn颗粒,并通过弥散强化机制提升了ATZ331合金的力学性能。轧制方式对ATZ331合金微观结构及力学性能有较大影响,单向轧制后ATZ331合金的抗拉强度达到222 MPa,但延伸率为18%,低于交叉轧制后合金的延伸率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王力
裴迪
李新林
裴志洋
关键词:  ATZ331合金  轧制  显微组织  力学性能    
Abstract: The magnesium alloy, as an important structure material, provided the light density, high specific intensity, good damping and excellent electromagnetic shielding properties have attracted more extensive attention. However, the poor deformation ability of magnesium alloys has greatly limited its industrial application. In this paper, the traditional casting method was used to obtain the ATZ331 alloy which was plastic deformed by uniaxial rolling and cross rolling, and the metallographic microscope, SEM, XRD and universal material tester were used to character the microstructure evolution and mechanical properties. The results showed that the ATZ331 alloy treated by solid solution caused the fine and dispersedly distributed Mg2Sn and MgZn particles were precipitated at the grain boundary and within the grain of matrix α-Mg and the mechanical properties of ATZ331 alloy were improved by dispersion strengthening mechanism. The rolling methods have great influence on the microstructure and mechanical properties of ATZ331 alloys. The tensile strength of ATZ331 series alloy deformed by uniaxial rolling reached 222 MPa and the elongation was 18%, lower than cross rolling.
Key words:  ATZ331 alloy    rolling    microstructure    mechanical properties
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  TG292  
基金资助: 宁夏科技重点研发计划(2018BEE03029);宁夏自然科学基金(2019AAC03272);宁夏高等学校科学技术研究项目(NGY2018-250);银川能源学院引进人才启动基金项目(2018-KY-R-01)
通讯作者:  wl_880330@126.com   
作者简介:  王力,副教授,博士,主要研究方向为镁合金制备及塑性变形规律。
引用本文:    
王力, 裴迪, 李新林, 裴志洋. 轧制ATZ331合金的显微组织与力学性能[J]. 材料导报, 2020, 34(Z2): 356-359.
WANG Li, PEI Di, LI Xinlin, PEI Zhiyang. Effect of Rolling on Microstructure and Mechanical Properties of ATZ331 Alloy. Materials Reports, 2020, 34(Z2): 356-359.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/356
1 Suh B C, Kim J H, Bae J H, et al. Acta Materialia, 2017, 124, 269.
2 Mahallawy N E, Ahmed A D, Akdesir M, et al. Materials Science and Engineering A, 2017, 680, 47.
3 Yim C Y, Yang J, Woo S K, et al. Corrosion Science, 2015, 90, 597.
4 Yao Y, Liu C, Wan Y C, et al.Materials Characterization, 2020, 161, 110.
5 Chen W, Lv Y P, Wang H D, et al. Materials Science and Engineering A, 2020, 769, 24.
6 Chen T, Chen Z Y, Yi L, et al. Materials Science and Engineering A, 2014, 615, 324.
7 Li X, Al-Samman T, Gottstein G, et al. Materials & Design, 2011, 32, 4387.
8 Chino Y, Lee J, Sassa K, et al. Materials Letter, 2006, 60, 173.
9 Nayana N, Mishra S, Prakashc A, et al. Materials Science and Enginee-ring A, 2019, 740, 253.
10 Chang L L, Tang H, Guo J, et al. Journal of Alloys and Compounds, 2017, 703, 554.
11 Chaoqiang L, Houwen C, Jianfeng N, et al.Materials Characterization, 2016, 113, 217.
12 Xu S W, Matsumoto N, Kojima Y, et al.Materials Science and Enginee-ring A, 2009, 517, 356.
13 Jung J G, Sung H P, Bong S Y, et al.Journal of Alloys and Compounds, 2015, 627, 325
14 Qiu X, Yang Q, Guan K, et al.Rare Metals, 2017, 36, 962.
15 Zhang D D, Guan K, Yang Q, et al. Materials Science and Engineering A, 2019, 745, 363.
16 Chang T C, Wang J Y, Lee S, et al.Journal of Materials Processing Technology, 2003, 140, 589.
[1] 张鹏斐, 乔志军, 张志佳, 于镇洋, 赵潭, 苟金龙. 加入增韧材料提高TiO2复合纳米电极的力学和电化学性能[J]. 材料导报, 2020, 34(Z2): 24-29.
[2] 王效军, 刘太奇. 碳纳米颗粒对碳纳米管复合材料电热-力学性能的影响[J]. 材料导报, 2020, 34(Z2): 63-66.
[3] 常洪雷, 陈繁育, 金祖权, 王广月, 刘健. 再生骨料混凝土在护岸工程应用的可行性[J]. 材料导报, 2020, 34(Z2): 206-211.
[4] 力乙鹏, 李婷. 土壤固化剂的固化机理与研究进展[J]. 材料导报, 2020, 34(Z2): 273-277.
[5] 贺龙朝, 荆磊, 余森, 徐云浩, 于振涛. 医用可降解镁基复合材料的研究现状及趋势[J]. 材料导报, 2020, 34(Z2): 323-326.
[6] 郝文俊, 孙荣禄, 牛伟, 谭金花, 李小龙. 合金元素影响高熵合金涂层组织及力学性能综述[J]. 材料导报, 2020, 34(Z2): 330-333.
[7] 晁代义, 于芳, 李红萍, 高振文, 张倩, 吕正风, 程仁策. 均匀化工艺对大尺寸7075铝合金组织和性能的影响[J]. 材料导报, 2020, 34(Z2): 362-364.
[8] 王鸣, 张旭, 赵阳, 都亮, 程丽丽, 梁萌. 轧制延展率对IF钢箔力学性能的影响[J]. 材料导报, 2020, 34(Z2): 395-398.
[9] 雷达, 王海林, 周彪, 李贤, 包爽. 铝合金-低碳钢异种金属电阻点焊工艺研究[J]. 材料导报, 2020, 34(Z2): 465-468.
[10] 车会凌, 赵元轶, 冉雄雄, 董皓月, 匡颖, 高姗姗. 不同形貌的纳米二氧化硅制备方法及其对高分子复合材料力学性能的影响综述[J]. 材料导报, 2020, 34(Z2): 484-489.
[11] 黄爱宾, 刘彩凤, 张晓惠. 聚乳酸共混的研究进展[J]. 材料导报, 2020, 34(Z2): 586-589.
[12] 李沛欣, 袁凌, 潘磊, 刘伟超, 周文明, 任拓. MW级风电叶片用聚氨酯涂料的研究进展[J]. 材料导报, 2020, 34(Z2): 594-597.
[13] 张绍康, 王茹, 徐玲琳, 钟世云, 张国防, 王培铭. 羟乙基甲基纤维素改性水泥砂浆的物理力学性能和孔隙率[J]. 材料导报, 2020, 34(Z2): 607-611.
[14] 孙鹏飞, 黄舰, 吕平, 张锐, 方志强. 聚脲涂覆建筑结构抗爆性能研究进展[J]. 材料导报, 2020, 34(Z2): 623-630.
[15] 吕展衡, 陈品鸿, 许冰, 罗颖, 周武艺, 董先明. 巯基-双键点击反应制备光固化红光转光膜及其性能[J]. 材料导报, 2020, 34(Z1): 111-115.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed