Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 344-347    
  金属与金属基复合材料 |
钛合金渗碳处理研究进展
庄唯, 王耀勉, 杨换平, 剡文斌
西安建筑科技大学冶金工程学院,西安 710055
Research Progress in Carburizing Treatment of Titanium Alloys
ZHUANG Wei, WANG Yaomian, YANG Huanping, YAN Wenbin
School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
下载:  全 文 ( PDF ) ( 3074KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钛及钛合金在航空航天、汽车轮船、国防工业、医疗等领域的应用越来越广泛,对其性能要求越来越高。但是钛及钛合金硬度较低、摩擦磨损性能较差,使其在摩擦学领域的应用受到很大限制。利用渗碳处理工艺在钛合金表面形成渗碳层,可明显提高钛合金表层硬度和摩擦磨损性能。本文综述了当前钛合金渗碳处理所采用的气体渗碳、激光渗碳和等离子渗碳三种渗碳工艺,以及相应的渗碳机理和渗碳层微观结构特征。其中钛合金气体渗碳主要以CO、甲烷作为碳源,通过气固相界面传输,使活性碳原子扩散到钛合金的表层及次表层,并形成TiC层,是相对经济的渗碳方式;气体渗碳时钛合金完全暴露在大气中,由于氧与钛的亲和力较高容易形成致密的氧化层,阻碍碳原子的进一步扩散。激光渗碳方法在钛合金表面原位生成TiC。激光渗碳时仅熔化部分材料,引入能量较小,得到的渗碳层组织均匀,韧性较高,而且与基体结合力强。等离子渗碳在阴极和阳极电离作用下使碳离子撞击钛合金表层形成渗碳层。等离子渗碳时的真空处理条件避免了氧化膜的形成和氢元素进入基体后所造成的氢脆现象。等离子渗碳获得的渗碳层较深、TiC浓度较高,而且渗碳周期短。本文比较了钛合金三种不同渗碳工艺之间的异同,并对钛合金渗碳处理的研究提出了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
庄唯
王耀勉
杨换平
剡文斌
关键词:    钛合金  渗碳  机理  组织形貌    
Abstract: Titanium and titanium alloy are widely used in aerospace, automobile and ship, national defense industry, medical treatment and other fields. However, the low hardness, poor friction and wear properties of titanium and its alloy restrict their application in tribology. The carburized layer on the surface of titanium alloy can obviously improve the surface hardness and friction and wear performance of titanium alloy. In this paper, three carburizing processes, gas carburizing, laser carburizing and plasma carburizing, as well as corresponding carburizing mechanism and microstructure characteristics of carburizing layer, are summarized. The gas carburizing of titanium alloy mainly uses CO and methane as carbon sources. Through gas-solid interface transmission, activated carbon atoms diffuse to the surface and subsurface layer and form TiC layer, which is a relatively economic carburizing method. During gas carburizing, titanium alloy is completely exposed to the atmosphere, and dense oxide layer is easily formed due to the high affinity between oxygen and titanium, which hinders the further diffusion of carbon atoms. TiC was generated in situ on the surface of titanium alloy by laser carburizing. During laser carburizing, only part of the material is melted, therefore the energy consumption is small. The carburizing layer can show uniform microstructure, high toughness, and high adhesion strength with the matrix. Plasma carburizing causes carbon ions to collide with titanium alloy surface to form carburizing layer under cathode and anode ionization. The formation of oxide film and hydrogen embrittlement can be avoided under the vacuum treatment conditions. The plasma carburizing layer is deep, TiC concentration is higher, and the carburizing period is short. In this paper, the similarities and differences of three different carburizing processes of titanium alloys are compared, and the research prospects of carburizing treatment of titanium alloys are proposed.
Key words:  titanium    titanium alloy    carburizing    mechanism    microstructure
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  TG146.2+3  
基金资助: 陕西省重点研发计划(2017GY-115)
通讯作者:  ymwang@xauat.edu.cn   
作者简介:  庄唯,2018年毕业于内蒙古科技大学,获得学士学位。现为西安建筑科技大学冶金工程学院硕士研究生。目前主要研究领域为材料表面工程。王耀勉,西安建筑科技大学冶金工程学院副教授,硕士研究生导师。2010年在东北大学材料学专业获博士学位。主要从事金属材料制备与塑性加工、表面工程和计算材料学研究。
引用本文:    
庄唯, 王耀勉, 杨换平, 剡文斌. 钛合金渗碳处理研究进展[J]. 材料导报, 2020, 34(Z2): 344-347.
ZHUANG Wei, WANG Yaomian, YANG Huanping, YAN Wenbin. Research Progress in Carburizing Treatment of Titanium Alloys. Materials Reports, 2020, 34(Z2): 344-347.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/344
1 Kim T S, Park Y G, Wey M Y. Material sence & Engineering A, 2003, 361, 275.
2 Filip R, Sieniawski J, Pleszakov E. Surface Engineering, 2013, 22(1), 53.
3 Guo L N, Chen J, Pan J D. Applied Mechanics & Materials, 2012, 217-219, 1257.
4 Wang B, He Y, Liu Y, et al.Materials, 2020, 13, 2352.
5 Dong Z H, Zhang W, Kang H W, et al.Surface and Coatings Technology, 2020, 397, 125976.
6 Yang Y H, Wang M Q, Chen J C, et al. Journal of Iron & Steel Research, 2013, 20(12),140.
7 Zhang Y, Wei Q L, Xing Y Z, et al. Journal of Wuhan University of Technology-Mater, 2015, 30(3),631.
8 Guo L N, Chen J, Pan J D.Advanced Materials Research, 2011, 314-316, 108.
9 Edenh B, 陈留柏.国外金属热处理, 1992, 13(2), 28.
10 Jiang Y, Wu Q, Wang Y, et al.International Journal of Hydrogen Energy, 2019, 44(43), 24554.
11 Mohammad A.R. Dewan, Guangqing Zhang, Oleg Ostrovski. Metallurgical and Materials Transactions B, 2009, 40(1), 62.
12 Ostrovski O, Zhang G.AIChE Journal, 2010, 52(1), 300.
13 Liu Z, Peng Y, Chen C, et al.International Journal of Pressure Vessels and Piping, 2020, 182,104053.
14 张良界,李朋,潘邻,等. 机械工程材料, 2014, 38(3), 44.
15 Ma F, Pan L, Zhang L J, et al. Materials Research Innovations, 2014, 18(2), 1023.
16 Gao F, Gong J, Jiang Y, et al.Jinshu Rechuli/Heat Treatment of Metals, 2014, 39(12), 102.
17 Saleh A F, Abboud J H, Benyounis K Y.Optics & Lasers in Engineering, 2010, 48(3), 257.
18 Zhu Y, Tian X, Li J, et al.Journal of Alloys & Compounds, 2014, 616, 468.
19 Tsuji N, Tanaka S, Takasugi T. Materials Science & Engineering A, 2008, 488(1-2), 139.
20 Dai J, Chen C, Li S, et al. Advanced Materials Research, 2014, 936, 1086.
21 Koshuro V, Voyko A, Fomina M, et al.Journal of Physics Conference Series, 2019, 1410,012220.
22 Li J, Zhang X J, Wang H P, et al. International Journal of Minerals Metallurgy & Materials, 201320(1), 57.
23 Zeng X, Yamaguchi T, Nishio K. Surface & Coatings Technology, 2015, 262, 1.
24 Zeng X, Wang W, Yamaguchi T, et al.Optics & Laser Technology, 2018, 98,106.
25 Courant B, Hantzpergue J J, Avril L, et al.Journal of Materials Proces-sing Technology, 2005, 160(3), 374.
26 Courant B, Hantzpergue J J, Benayoun S.Wear, 1999, 236(1-2), 39.
27 Zhang G H, Zhang P Z, Yu M Z, et al.Advanced Materials Research, 2008, 47-50, 1197.
28 Belkin P N, Kusmanov S A, Dyakov I G, et al.Surface and Coatings Technology, 2016, 307,1303.
29 Fontes M A, Scheid V H B, Machado D D S, et al.Materials Research, DOI:10.1590/1980-5373-MR-2018-0612.
30 Park Y G.Journal of Materials Science Materials in Medicine, 2007, 18, 925.
31 Zhang Y, Wei Q L, Xing Y Z, et al. Journal of Wuhan University of Technology Mater.sci.ed, 2015, 30(3), 631.
32 Zambon A, Ramous E, Bianco M, et al.Materials Science Forum, 1994, 163-165(6), 411.
33 Xing Y Z, Jiang C P, Hao J M.Vacuum, 2013, 95, 12.
34 Kim T S, Park Y G, Wey M Y.Materials Science & Engineering A Structural Materials, 2003, 361, 275.
35 Yun Z, Zhang Y, Yun Z, et al. Rare Metal Materials and Engineering, 2017, 46(6), 1503.
36 Zhang Y, Wei Q, Xing Y Z, et al. Journal of Wuhan University of Technology, 2015, 000,631.
37 Oliveira V M, Silva M C, Pinto C G.Journal of Materials Research and Technology, 2015, 200(4),359.
38 Tsuji N, Tanaka S, Takasugi T.Surface & Coatings Technology, 2009, 203(10), 1400.
39 姬寿长, 李争显, 畅晨阳,等.钛工业进展, 2017, 34(6), 22.
40 Ostrovski O, Zhang G .AIChE Journal, 2010, 52, 300.
41 Ajikumar P K, Vijayakumar M, Kamruddin M, et al. International Journal of Refractory Metals & Hard Materials, 2012, 31, 62.
42 Hamedi M J, Torkamany M J, Sabbaghzadeh J.Optics & Lasers in Engineering, 2011, 49(4), 557.
43 Makuch N, Kulka M, Dziarski P, et al.Optics and Lasers in Engineering, 2014, 57, 64.
44 赵文轸. 中国表面工程, 1998, 39(2),5.
45 Xing Y Z, Jiang C P, Hao J M. Rare Metal Materials and Engineering, 2013, 42(6), 1101.
46 唐先敏. 国外金属热处理, 1993, 14(3), 40.
47 Belkin P N, Kusmanov S A, Dyakov I G, et al. Surface and Coatings Technology, 2015, 262, 1.
48 Saleh A F, Abboud J H, Benyounis K Y. Optics & Lasers in Engineering, 2010, 48(3), 257.
49 Zhang G H, Pan J D, He Z Y, et al.Journal of Wuhan University of Technology (Materials Science Edition), 2005, 20(4), 80.
50 柳文涛. Ti-6Al-4V离子渗氮和离子渗碳的研究. 硕士学位论文, 长安大学, 2008.
[1] 栾福园, 杨松旺, 吴子华, 谢华清. 钙钛矿太阳能电池的环境友好化研究进展[J]. 材料导报, 2020, 34(Z2): 11-16.
[2] 刘侠妤. 卤化铅钙钛矿量子点太阳能电池的进展与展望[J]. 材料导报, 2020, 34(Z2): 17-18.
[3] 王鸣, 黄俊涛, 程丽丽, 周律法, 任亚航, 王学雷. 锂离子电池负极用Li4Ti5O12@C复合材料的制备及电化学性能[J]. 材料导报, 2020, 34(Z2): 19-23.
[4] 张鹏斐, 乔志军, 张志佳, 于镇洋, 赵潭, 苟金龙. 加入增韧材料提高TiO2复合纳米电极的力学和电化学性能[J]. 材料导报, 2020, 34(Z2): 24-29.
[5] 巩云, 王龙龙, 徐亚琪, 张传香. 二氧化钛光催化材料的改性研究进展[J]. 材料导报, 2020, 34(Z2): 37-40.
[6] 力乙鹏, 李婷. 土壤固化剂的固化机理与研究进展[J]. 材料导报, 2020, 34(Z2): 273-277.
[7] 许爱平, 侯继军, 董俊慧. 稀土活性剂对TC4钛合金激光焊焊接接头的影响[J]. 材料导报, 2020, 34(Z2): 348-350.
[8] 王德军, 李慧, 姜锡仁, 赵朝成, 赵玉慧, 邓春梅, 王鑫平. 高级氧化技术去除水环境中多环芳烃的研究进展[J]. 材料导报, 2020, 34(Z2): 507-512.
[9] 左文韬, 樊正方, 刘国强, 刘江, 廖成. 电荷传输层和热退火对钙钛矿薄膜电学性能的影响[J]. 材料导报, 2020, 34(Z1): 13-18.
[10] 魏声培. 分子印迹型二氧化钛的制备方法研究进展[J]. 材料导报, 2020, 34(Z1): 22-25.
[11] 张莉. 碳纳米管的吸附性能及对水中污染物的吸附:综述[J]. 材料导报, 2020, 34(Z1): 72-77.
[12] 居殿春, 武兆勇, 张荣良, 王海风, 王锋, 严定鎏. 微波加热Mg-TiO2混合物的研究[J]. 材料导报, 2020, 34(Z1): 140-143.
[13] 苏岳威, 张宁, 吕宪俊, 王俊祥. 水玻璃模数对矿渣基胶凝材料水化特性及动力学的影响[J]. 材料导报, 2020, 34(Z1): 271-276.
[14] 李毅, 赵永庆, 曾卫东. 航空钛合金的应用及发展趋势[J]. 材料导报, 2020, 34(Z1): 280-282.
[15] 任军帅, 李欣琳, 肖松涛, 周立鹏, 舒滢, 张英明. 新型Ti-Al-Zr-Nb-Mo-Si钛合金热变形行为及基于BP神经网络模型的本构关系研究[J]. 材料导报, 2020, 34(Z1): 283-288.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed