Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 273-277    
  无机非金属及其复合材料 |
土壤固化剂的固化机理与研究进展
力乙鹏1,2, 李婷1,2
1 中国建筑材料科学研究总院,北京 100024
2 中建材中岩科技有限公司,北京 100024
Stability Mechanism and Research Progress of Soil Stabilizer
LI Yipeng1,2, LI Ting1,2
1 China Building Materials Academy, Beijing 100024, China
2 CNBM Zhongyan Technology Co., Ltd., Beijing 100024, China
下载:  全 文 ( PDF ) ( 1998KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 土壤固化剂属于一种新型的绿色建筑材料,其施工简单且工程适应性高,提高了施工效率,减少了社会资源的利用,有效保护了生态环境。然而,由于土壤固化剂种类繁多,其适用范围、作用效果也不尽相同,近几年来研究者主要针对不同类别土壤固化剂的固化机理以及其对土壤性能的影响进行研究,并取得了丰硕的成果。通过微观与宏观相结合,不断探究各种变量下固化土性能变化,改进配比,在充分发挥土壤固化剂优势的同时,使其更好地应用在实际工程中。本文分析了无机类、离子类、有机类和生物酶类四种不同类别土壤固化剂的固化机理,并对其力学性能、耐久性能和动力特性进行了归纳,在此基础上总结了不同类别土壤固化剂的优缺点与适用范围,提出了部分研究建议,以期为后续土壤固化剂的制备与研究提供部分参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
力乙鹏
李婷
关键词:  土壤固化剂  固化机理  力学性能  耐久性能  动力特性    
Abstract: The soil stabilizer is a new type of green building material with simple construction and high engineering adaptability, which not only improves the construction efficiency, but also reduces the use of social resources and effectively protects the ecological environment. In recent years, the stabilization mechanism of different types of soil stabilizers and their effects on soil performance have been extensively studied, because there are many types of soil stabilizers, and their scope of application and effects are also different. Finally, a lot of results have been achieved. Researchers are constantly studying the changes in the properties of stabilized soils under various variables and improving the ratio of soil stabilizer by combining micro and macro. Research can fully demonstrate the advantages of soil stabilizers and be better applied in actual projects. This paper analyzes the solidification mechanism of four different types of soil curing agents, including inorganic, ionic, organic and biological enzymes, and summarizes their mechanical properties, durability and dynamic properties. On this basis, the advantages, disadvantages, and scope of application of different types of soil stabilizers are summarized. Finally, some research suggestions are put forward in order to provide some reference for the preparation and research of subsequent soil stabilizers.
Key words:  soil stabilizer    stability mechanism    mechanical properties    durability    dynamic characteristics
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  P642.1  
  TU441  
通讯作者:  182096201@qq.com   
作者简介:  力乙鹏,2019年毕业于内蒙古科技大学,硕士研究生,主要从事修补加固、特种工程材料、高分子材料等的应用与研究,先后参与国家自然科学基金、省市级重点研发项目等多项课题。李婷,2009年毕业于北京工业大学,硕士研究生,主要从事水泥、混凝土外加剂、特种工程材料的研究,承担省市级及以上项目10余项,发表论文近20篇,授权专利8项。
引用本文:    
力乙鹏, 李婷. 土壤固化剂的固化机理与研究进展[J]. 材料导报, 2020, 34(Z2): 273-277.
LI Yipeng, LI Ting. Stability Mechanism and Research Progress of Soil Stabilizer. Materials Reports, 2020, 34(Z2): 273-277.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/273
1 Zhou S Q, Zhou D W, Zhang Y F, et al.Advances in Civil Engineering, DOI: 10. 1155/2019/4693757.
2 Wang Z, Xu S F, Wang G C. Energy Procedia, 2012, 16, 302.
3 Wang Z, Xu S F, Li Y L. Advances in Building Materials, 2011, 168-170, 1496.
4 卢雪松. 离子土壤固化剂加固武汉红色粘土的试验效果及其机理研究. 博士学位论文, 中国地质大学, 2010.
5 耿轶君. EN-1土壤固化剂改良红砂岩的作用机理与路用性能研究. 硕士学位论文, 西南交通大学, 2009.
6 胡明玉, 付超, 魏丽丽, 等. 材料研究学报, 2017, 31(6), 445.
7 Inazumi S, Intui S, Jotisankasa A, et al. Case Studies in Construction Materials, 2019, 36(7), 5533.
8 Hassan N, Hassan W H W, Rashid A S A, et al.Environmental Earth Sciences, 2019, 78 (12), 1.
9 樊恒辉, 吴普特, 高建恩, 等. 建筑材料学报, 2010, 13(5), 669.
10 杨富民, 何军利, 孙成晓, 等. 科学技术与工程, 2019, 19(5), 242.
11 杨青, 罗小花, 邱欣, 等. 公路交通科技, 2015, 32(11), 33.
12 刘清秉, 项伟, 张伟锋, 等. 岩土力学, 2009, 30(8), 2286.
13 Ma F J, Wu B, Zhang Q, et al.Journal of Hazardous Materials, 2018, 344,727.
14 孔繁轩, 羊东, 刘瑾, 等. 勘察科学技术, 2019(4), 1.
15 刘瑾, 张达, 汪勇, 等. 地球科学与环境学报, 2016, 38(3), 420.
16 黄泓翔. 生物酶固化土的加固机理及工程特性研究. 硕士学位论文, 重庆交通大学, 2018.
17 Raul V, Mihai O M, Ray H, et al.Modulus of Resilience, 2005, 25, 1.
18 孙振平, 吕文斌, 孙广花. 新型建筑材料, 2010, 37(10), 87.
19 彭红涛, 张琪, 李乃胜, 等. 建筑材料学报, 2012, 15(3), 372.
20 Zhao Y L, Gao Y, Zhang Y L, et al.Construction and Building Materials, 2016, 126, 701.
21 Ma C, Chen L Z, Chen B. Construction and Building Materials, 2014, 71, 354.
22 Ma C, Zhao B, Long G, et al.Construction and Building Materials, 2018, 174, 520.
23 Ma C, Chen B, Chen L Z.KSCE Journal of Civil Engineering, 2018, 22(1), 62.
24 Sharma A K, Sivapullaiah P V. Soils and Foundations, 2016, 56(2), 205.
25 Pan C G, Xie X Y, Gen J, et al. Construction and Building Materials, DOI:10.1016/j.conbuildmat.2019.117538.
26 张建楠. 冻融作用对Aught-Set固化剂改良土力学特性的影响实验分析. 硕士学位论文, 北京交通大学, 2010.
27 Zhang Z L, Zhang H, Zhang J M, et al.KSCE Journal of Civil Enginee-ring, 2019, 23 (7), 2867.
28 张致龙, 张建明, 张虎, 等. 冰川冻土, 2019, 41(1), 140.
29 Alhassan H M, Olaniyi L F. British Journal of Applied Science and Technology, 2013, 3(3), 406.
30 Tao J Q, Lin W Y, Luo X H, et al. Key Engineering Materials, 2016, 667, 341.
31 He S, Yu X B, Banerjee A,et al. Transportation Research Record, 2018, 2672(52), 1.
32 单志杰, 张兴昌, 赵伟霞, 等. 水土保持学报, 2010, 24(5), 6.
33 Lu X S, Wei X.Advanced Materials Research, 2011, 183-185, 1736.
34 Lu X S, Wei X.Advanced Materials Research, 2011, 261-263, 1129.
35 Wang Y J, Lin W Y, Huang Y S, et al.Key Engineering Materials, 2015, 667, 335.
36 Wang F, Wei X, Corely T, et al. Soil Mechanics and Foundation Engineering, 2018, 55(3), 1.
37 Lu X S, Wei X.Advanced Materials Research, 2011, 374-377, 1391.
38 Liu J, Shi B, Jiang H, et al.Engineering Geology, 2010, 117(1), 114.
39 Zandieh A R, Yasrobi S S. Geotechnical and Geological Engineering, 2017, 36(6), 3045.
40 Anagnostopoulos C A,Geotechnical and Geological Engineering, 2014, 32, 859.
41 江臣, 施斌, 刘发, 等. 防灾减灾工程学报, 2009, 29(5), 507.
42 Aksoy H S, Mesut G. Environmental Science and Development, 2013, 4(1), 11.
43 Tung H, James A, Bora C, et al.Canadian Geotechnical Journal, 2019, 56(6), 808.
44 Eujine G N, Somervell L T, Chandrakaran S, et al.Electron Journal Geotechnical Engineering, 2014, 19, 6974.
45 Parsons R, Milburn J.Transportation Research Record, 2003, 1837, 20.
46 Chandler N, Palson J, Burns T. Canadian Geotechnical Journal, 2017, 54(10), 1.
47 Pooni J, Giustozzi F, Robert D, et al. Transportation Geotechnics, DOI:10.1016/j.trgeo.2019.100255.
48 Peng H T, Su H T, Zhang X P, et al. Advanced Materials Research, 2011, 281,1.
49 陈胜, 王琦, 岳云龙, 等. 济南大学学报(自然科学版), 2006(1), 12.
50 孟子龙. 生物酶固化技术在道路基层中的应用研究. 硕士学位论文,长沙理工大学, 2012.
[1] 张鹏斐, 乔志军, 张志佳, 于镇洋, 赵潭, 苟金龙. 加入增韧材料提高TiO2复合纳米电极的力学和电化学性能[J]. 材料导报, 2020, 34(Z2): 24-29.
[2] 王效军, 刘太奇. 碳纳米颗粒对碳纳米管复合材料电热-力学性能的影响[J]. 材料导报, 2020, 34(Z2): 63-66.
[3] 常洪雷, 陈繁育, 金祖权, 王广月, 刘健. 再生骨料混凝土在护岸工程应用的可行性[J]. 材料导报, 2020, 34(Z2): 206-211.
[4] 贺龙朝, 荆磊, 余森, 徐云浩, 于振涛. 医用可降解镁基复合材料的研究现状及趋势[J]. 材料导报, 2020, 34(Z2): 323-326.
[5] 郝文俊, 孙荣禄, 牛伟, 谭金花, 李小龙. 合金元素影响高熵合金涂层组织及力学性能综述[J]. 材料导报, 2020, 34(Z2): 330-333.
[6] 王力, 裴迪, 李新林, 裴志洋. 轧制ATZ331合金的显微组织与力学性能[J]. 材料导报, 2020, 34(Z2): 356-359.
[7] 王鸣, 张旭, 赵阳, 都亮, 程丽丽, 梁萌. 轧制延展率对IF钢箔力学性能的影响[J]. 材料导报, 2020, 34(Z2): 395-398.
[8] 雷达, 王海林, 周彪, 李贤, 包爽. 铝合金-低碳钢异种金属电阻点焊工艺研究[J]. 材料导报, 2020, 34(Z2): 465-468.
[9] 车会凌, 赵元轶, 冉雄雄, 董皓月, 匡颖, 高姗姗. 不同形貌的纳米二氧化硅制备方法及其对高分子复合材料力学性能的影响综述[J]. 材料导报, 2020, 34(Z2): 484-489.
[10] 黄爱宾, 刘彩凤, 张晓惠. 聚乳酸共混的研究进展[J]. 材料导报, 2020, 34(Z2): 586-589.
[11] 李沛欣, 袁凌, 潘磊, 刘伟超, 周文明, 任拓. MW级风电叶片用聚氨酯涂料的研究进展[J]. 材料导报, 2020, 34(Z2): 594-597.
[12] 张绍康, 王茹, 徐玲琳, 钟世云, 张国防, 王培铭. 羟乙基甲基纤维素改性水泥砂浆的物理力学性能和孔隙率[J]. 材料导报, 2020, 34(Z2): 607-611.
[13] 孙鹏飞, 黄舰, 吕平, 张锐, 方志强. 聚脲涂覆建筑结构抗爆性能研究进展[J]. 材料导报, 2020, 34(Z2): 623-630.
[14] 吕展衡, 陈品鸿, 许冰, 罗颖, 周武艺, 董先明. 巯基-双键点击反应制备光固化红光转光膜及其性能[J]. 材料导报, 2020, 34(Z1): 111-115.
[15] 王枭, 郭伟, 胡月阳, 陈芹, 仇佳琳, 李正阳, 陈佳彬, 管荣成. 硫硅酸钙的合成及水化性能的研究[J]. 材料导报, 2020, 34(Z1): 169-172.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed